

Jahresbericht der Luftgütemessungen in Österreich 2002

Wien, 2003

Autoren

Wolfgang Spangl Christian Nagl

Daten

Ämter der Landesregierungen Umweltbundesamt

Impressum

Medieninhaber und Herausgeber: Umweltbundesamt GmbH (Federal Environment Agency Ltd) Spittelauer Lände 5, A-1090 Wien (Vienna), Austria

Eigenvervielfältigung

© Umweltbundesamt GmbH, Wien, 2003 Alle Rechte vorbehalten (all rights reserved) ISBN 3-85457-699-4

<u>Inhalt</u>

1	Zusammenfassung	3
2	Executive Summary	9
3	Einleitung	11
3.1	Das Immissionsschutzgesetz -Luft	11
3.2	Die Messkonzept-Verordnung zum IG-L	13
3.3	Ozongesetz und EU-Richtlinien	16
4	Ergebnisse der Immissionsmessungen	19
4.1	Schwebestaub und PM10	19
	.1.1 Anzahl der Messstellen zur Kontrolle der Einhaltung der Gesamtschwebestaub- u PM10-Grenzwerte	ınd 19
	.1.2 Die Gesamtschwebestaubbelastung 2002	20
	.1.3 Die PM10-Belastung im Jahr 2002	23
	.1.4 PM2,5	30
4.2	Stickstoffdioxid	30
4.3	Schwefeldioxid	35
4.4	Kohlenstoffmonoxid	39
4.5	Blei im Schwebestaub	42
4.6	Benzol	44
4.7	Ozon	46
4.8	Staubniederschlag	55
4.9	EMEP-Messergebnisse	
5	Resümee und Ausblick	
5.1	Die Immissionssituation 2002	59
5.2	Statuserhebungen und Maßnahmenkataloge	60
5.3	Überschreitungen der Grenzwerte der EU-Richtlinien 1999/30/EG und 2000/69/EG	
5.4	Vorschau: Neue gesetzliche Regelungen 2003	66
6	Literatur	
Anha	g 1: Immissionsgrenzwerte der EU-Richtlinien 1999/30/EG, 2000/69EG und 2002/3/EG	71
Anha	g 2: Glossar und Abkürzungen	73
	g 3: Einheiten und Umrechnungsfaktoren	
	g 4: Mittelwerte	
Anha	5 : Verfügbarkeit der Messdaten und Messergebnisse	
	Gesamtschwebestaub	
	PM10	
	Schwefeldioxid	
	Stickstoffoxide	
	Kohlenstoffmonoxid	
	Ozon	99
	Staubniederschlag	
	6: Angaben zur Qualitätssicherung	
Anha	g 7: Standortfunktionsbestimmung	111

2	Jahresbericht der Luftgütemessungen in Österreich 2002

1 Zusammenfassung

Der vorliegende Bericht bietet einen Überblick über die Luftgütesituation in Österreich im Jahr 2002. Basis für die Beschreibung sind die Immissionsmessungen, die von den Ämtern der Landesregierungen sowie dem Umweltbundesamt im Rahmen des Vollzugs des Immissionsschutzgesetzes Luft (IG-L, BGBI. I 115/97, idgF) und der dazugehörigen Messkonzept-VO (BGBI. II 358/98, idF. BGBI. II 344/2001) durchgeführt werden.

Die Beschreibung der Luftgütesituation erfolgt in diesem Bericht in erster Linie im Rahmen einer Bewertung der Belastung in Relation zu den Grenz- und Zielwerten, wie sie im Immissionsschutzgesetz festgelegt sind.

Die Grenzwerte für **Gesamtschwebestaub (TSP)**, **PM10**, **Schwefeldioxid** und **Stickstoffdioxid** wurden 2002 an den in Tabelle 1 zusammengestellten Messstellen überschritten.

Tabelle 1a: Grenzwertüberschreitungen bei Schwebestaub (TSP, Tagesmittelwert >150 μg/m³)

Gebiet	Messstelle	Anzahl der Über- schreitungen	max. Konzentration (μg/m³)	Betrieb gemäß IG-L
K	Villach	1	242	ja
N	Himberg	1	161	nein
BG Linz	Linz ORF-Zentrum	6	216	ja
BG Linz	Linz Neue Welt	1	153	ja
BG Graz	Graz Don Bosco	1	154	nein
BG Graz	Graz Süd	2	176	ja
St	Kapfenberg	1	209	ja
St	Leoben Göss	1	211	ja
St	Leoben Zentrum	1	247	ja
St	Pöls Ost	1	207	ja
St	Weiz	1	152	ja
Т	Brixlegg	1	158	ja
Т	Innsbruck Reichenau	8	208	ja
Т	Innsbruck Zentrum	1	161	ja
Т	Lienz	1	170	ja
W	Wien Kendlerstr.	1	157	ja

Tabelle 1b: Grenzwertüberschreitungen bei PM10 (35 TWM >50 μg/m³ sind zulässig, Jahresmittelwert 40 μg/m³; JMW>40 μg/m³ sind fett gedruckt)

Gebiet	Messstelle	Anzahl TMW > 50 μg/m³	max. TMW (μg/m³)	JMW (µg/m³)	Betrieb gem. IG-L
В	Eisenstadt	39	84	29	ja
В	Illmitz	45	104	29	ja
В	Kittsee	53	87	31	ja
K	Klagenfurt Völkermarkterstr.	58	127	37	ja
N	Amstetten	42	135	33	ja
N	Hainburg	63	83	33	ja
N	Himberg	52	90	33	ja
N	Klosterneuburg	61	90	33	ja
N	Mannswörth	51	126	38	nein
N	Mistelbach	44	101	32	ja
N	Mödling	48	94	30	ja
N	Schwechat	69	83	35	ja
N	Stixneusiedl	60	90	33	ja
N	Vösendorf	69	88	35	ja
BG Linz	Linz 24er Turm	52	116	32	ja
BG Linz	Linz Neue Welt	56	107	34	ja
BG Linz	Linz ORF-Zentrum	64	143	35	ja
BG Linz	Linz Römerberg	65	135	36	ja
BG Linz	Steyregg	42	123	29	ja
St	Bruck a.d.M.	52	203	32	ja
St	Gratwein	36	100	31	ja
BG Graz	Graz Don Bosco	131	229	51	ja
BG Graz	Graz Mitte	99	154	44	ja
BG Graz	Graz Ost	72	117	37	ja
St	Hartberg	59	119	37	ja
St	Köflach	85	154	40	ja
St	Peggau	38	118	34	ja
Т	Brixlegg	41	132	29	ja
T	Hall i.T.	45	101	29	ja
Т	Innsbruck Reichenau	50	173	31	ja
Т	Innsbruck Zentrum	40	134	29	ja
T	Lienz	37	141	29	ja
Т	Vomp – an der Leiten	37	97	29	ja
Т	Wörgl	42	100	28	ja
V	Feldkirch	63	241	38	ja
W	Wien Erdberg	55	108		nein
W	Wien Liesing	57	92	31	ja

Die Summe aus Grenzwert und Toleranzmarge der RL 1999/30/EG für PM10 – $65~\mu g/m^3$ als TMW, wobei bis zu 35 Überschreitungen pro Kalenderjahr erlaubt sind – wurde 2002 an den Messstellen Graz Don Bosco, Graz Mitte, Graz Ost und Feldkirch überschritten.

In Graz Don Bosco wurde auch die Summe aus Grenzwert und Toleranzmarge für den Jahresmittelwert von PM10 (46 µg/m³) überschritten (siehe Tabelle 3).

Bei **Schwebestaub** und **PM10** stellen verkehrsnahe Standorte in größeren Städten, v.a. in Graz, die Belastungsschwerpunkte dar, darüber hinaus auch kleinere Städte in alpinen Becken und Tälern, in denen ungünstige Ausbreitungsbedingungen einen wesentlichen Faktor für erhöhte Schwebestaubbelastungen darstellen. Für PM10 liegen im Jahr 2002 erstmals für ganz Österreich Daten vor, die deutlichen Grenzwertverletzungen u.a. in Graz und Linz, aber auch in nahezu allen anderen größeren Städten (außer Salzburg), in zahlreichen kleineren Städten v.a. südlich des Alpenhauptkamms sowie flächenhaft im Nordosten Österreichs zeigen. In Nordostösterreich dürfte die großflächig erhöhte PM10-Belastung mit einem relativ hohen Anteil sekundärer Partikel in Verbindung stehen; PM10-Ferntransport von Osten kann hier eine wesentliche Rolle spielen. Demgegenüber ist die PM10-Belastung an autobahnnahen ländlichen Messstellen relativ niedrig und liegt unter dem Grenzwert.

Die Schwebestaubbelastung nahm bis Mitte der Neunzigerjahre in Österreich tendenziell ab, in den letzten Jahren ist im Mittel keine wesentliche Veränderung mehr festzustellen.

Die **Schwefeldioxid**-Belastung war 2002 etwas höher als in den letzten Jahren, aber deutlich unter dem in Österreich bis Mitte der Neunzigerjahre beobachteten Niveau. Grenzwertverletzungen traten im Bereich einzelner Industriebetriebe und Kraftwerke sowie grenznah im Südosten auf. Die Grenzwerte zum Schutz der Ökosysteme wurden überall eingehalten.

Tabelle 1c: Überschreitungen des IG-L Grenzwertes für SO₂

		-	
Gebiet	Messstelle	Anzahl der Überschreitungen	max. HMW (μg/m³)
N	St. Pölten	1	312
St	Arnfels	2	433
St	Köflach	1	450
St	Straßengel	1	362

Die Grenzwerte der RL 1999/30/EG für SO_2 – sowohl zum Schutz der menschlichen Gesundheit wie der Ökosysteme – wurden im Jahr 2002 an allen Messstellen in Österreich eingehalten (siehe Tabelle 3).

Bei **Stickstoffdioxid** stellen die größeren Städte, aber auch ländliche verkehrsnahe Standorte die Belastungsschwerpunkte dar. 2002 traten einzelne Überschreitungen des Grenzwertes für den Halbstundenmittelwert (HMW) auf, v.a. in Salzburg und Graz.

Die Summe aus Grenzwert und Toleranzmarge für den Jahresmittelwert (55 μ g/m³) wurde im Unterinntal, in Salzburg und Wien überschritten, der Grenzwert selbst (30 μ g/m³), der ab 2012 einzuhalten ist, wurde an zahlreichen Messstellen in allen größeren Städten, aber auch an mehreren ländlichen autobahnnahen Standorten überschritten.

Tabelle 1d: Überschreitungen des IG-L Grenzwertes für NO₂ (HMW > 200 μg/m³)

Gebiet	Messstelle	Anzahl der Überschreitungen	max. HMW (µg/m³)
N	Klosterneuburg	1	251
S	Hallein Hagerkreuzung	1	208
S	Salzburg Lehen	1	251
S	Salzburg Mirabellplatz	1	231
S	Salzburg Rudolfsplatz	1	205
BG Graz	Graz Mitte	2	211

Tabelle 2: Überschreitungen des IG-L Grenzwertes von 30 μg NO₂/m³ (als Jahresmittelwert); Überschreitungen von Grenzwert und Toleranzmarge (55 μg/m³) sind fett gedruckt

Gebiet	Messstelle	NO ₂ JMW (µg/m³)
K	Klagenfurt Koschatstr.	32
K	Klagenfurt Völkermarkterstr.	38
K	Villach	31
N	Vösendorf	33
BG Linz	Linz 24er Turm	33
BG Linz	Linz Neue Welt	34
BG Linz	Linz ORF-Zentrum	34
BG Linz	Linz Römerberg	43
BG Linz	Linz Urfahr	32
0	Wels	31
S	Hallein Hagerkreuzung	46
S	Salzburg Lehen	33
S	Salzburg Mirabellplatz	36
S	Salzburg Rudolfsplatz	56
S	Zederhaus	33
BG Graz	Graz Don Bosco	45
BG Graz	Graz Nord	43
BG Graz	Graz Süd	32
Т	Gärberbach	41
Т	Hall i.T.	41
T	Innsbruck Reichenau	36
Т	Innsbruck Zentrum	40
Т	Kufstein	31
Т	Lienz	34
T	Vomp A12	61
Т	Vomp – a.d.L.	43
V	Dornbirn	33
V	Feldkirch	46
W	Belgradplatz	37
W	Floridsdorf	33
W	Gaudenzdorf	35
W	Hietzinger Kai	57

Gebiet	Messstelle	NO ₂ JMW (µg/m³)
W	Kaiserebersdorf	31
W	Kendlerstr.	31
W	Rinnböckstr.	45
W	Stephansplatz	31
W	Taborstr.	43
W	Währinger Gürtel	32

Der Grenzwert für NO_X zum Schutz der Vegetation wurde an den auf gesetzlicher Basis zum Schutz der Vegetation betriebenen Messstellen eingehalten. Überschreitungen traten aber an ländlichen Messstellen im Unterinntal und im Niederösterreichischen Alpenvorland auf, die allerdings nicht zum Schutz der Vegetation betrieben wurden.

Der Grenzwert der RL 1999/30/EG für NO_2 – 200 $\mu g/m^3$ als Einstundenmittelwert, wobei bis zu 18 Überschreitungen im Kalenderjahr erlaubt sind – wurde 2002 an allen Messstellen in Österreich eingehalten.

Der Grenzwert der RL 1999/30/EG für $NO_2-40~\mu g/m^3$ als Jahresmittelwert – wurde 2002 an den 13 Messstellen Vomp A12 Raststätte, Wien Hietzinger Kai, Salzburg Rudolfsplatz, Feldkirch, Hallein Hagerkreuzung, Wien Rinnböckstraße, Graz Don Bosco, Vomp - an der Leiten, Linz Römerberg, Wien Taborstraße, Graz Mitte, Hall i.T. und Gärberbach überschritten.

Die Summe aus Grenzwert und Toleranzmarge (letztere beträgt für 2002 16 μ g/m³), d.h. 56 μ g/m³ als Jahresmittelwert, wurde an den Messstellen Vomp A12 Raststätte und Wien Hietzinger Kai überschritten (siehe Tabelle 3).

Die Alarmwerte für SO₂ und NO₂ wurden in ganz Österreich eingehalten.

Tabelle 3: Höhe der Belastung in den gemäß Messkonzept-VO zum IG-L festgelegten Zonen in Relation zu den Grenzwerten der RL 1999/30/EG. GW: Grenzwert, TM: Toleranzmarge

	SO ₂	NO ₂ , menschl. Gesundheit	NOx, Vegetation	PM10
Burgenland	<gw< td=""><td><gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<></td></gw<>	<gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<>	<gw< td=""><td>>GW</td></gw<>	>GW
Kärnten	<gw< td=""><td><gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<></td></gw<>	<gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<>	<gw< td=""><td>>GW</td></gw<>	>GW
Niederösterreich	<gw< td=""><td><gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<></td></gw<>	<gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<>	<gw< td=""><td>>GW</td></gw<>	>GW
Oberösterreich ohne BR Linz	<gw< td=""><td><gw< td=""><td><gw< td=""><td><gw< td=""></gw<></td></gw<></td></gw<></td></gw<>	<gw< td=""><td><gw< td=""><td><gw< td=""></gw<></td></gw<></td></gw<>	<gw< td=""><td><gw< td=""></gw<></td></gw<>	<gw< td=""></gw<>
BR Linz	<gw< td=""><td>>GW</td><td><gw< td=""><td>>GW</td></gw<></td></gw<>	>GW	<gw< td=""><td>>GW</td></gw<>	>GW
Salzburg	<gw< td=""><td>>GW</td><td><gw< td=""><td><gw< td=""></gw<></td></gw<></td></gw<>	>GW	<gw< td=""><td><gw< td=""></gw<></td></gw<>	<gw< td=""></gw<>
Steiermark ohne BR Graz	<gw< td=""><td><gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<></td></gw<>	<gw< td=""><td><gw< td=""><td>>GW</td></gw<></td></gw<>	<gw< td=""><td>>GW</td></gw<>	>GW
BR Graz	<gw< td=""><td>>GW</td><td><gw< td=""><td>>GW+TM</td></gw<></td></gw<>	>GW	<gw< td=""><td>>GW+TM</td></gw<>	>GW+TM
Tirol	<gw< td=""><td>>GW+TM</td><td><gw< td=""><td>>GW</td></gw<></td></gw<>	>GW+TM	<gw< td=""><td>>GW</td></gw<>	>GW
Vorarlberg	<gw< td=""><td>>GW</td><td><gw< td=""><td>>GW+TM</td></gw<></td></gw<>	>GW	<gw< td=""><td>>GW+TM</td></gw<>	>GW+TM
BR Wien	<gw< td=""><td>>GW+TM</td><td></td><td>>GW</td></gw<>	>GW+TM		>GW

Bei **Kohlenmonoxid, Blei im PM10** und **Benzol** traten 2002, wie schon in den letzten Jahren seit 1998, keine Grenzwertverletzungen auf. Auch die Grenzwerte der RL 1999/30/EG (Blei) sowie 2000/69/EG (CO und Benzol) wurden an allen Messstellen in Österreich eingehalten.

Die Kurzzeit-Spitzenwerte der **Ozon**-Konzentration wiesen 2002 als ein vergleichsweise niedrig belastetes Jahr aus. Der Grenzwert der Vorwarnstufe des Ozongesetzes wurde an einem Tag an nur einer Messstelle überschritten, die Vorwarnstufe wurde somit nicht ausgerufen; der Schwellenwert zur Unterrichtung der Bevölkerung wurde an 14 Tagen an insgesamt 26 Messstellen überschritten.

Der Zielwert zum Schutz der menschlichen Gesundheit des IG-L wurde in ganz Österreich überschritten, in den größeren Städten an bis zu 60 Tagen, im ländlichen Raum Nordostösterreichs an bis zu 80 Tagen, im Mittelgebirge an bis zu 110 Tagen. Der Zielwert zum Schutz der Vegetation der RL 92/72/EWG wurde in ganz Österreich überschritten, im Hoch- und Mittelgebirge mit mehr als 90% der Tage in extremem Ausmaß, im Flach- und Hügelland Nordostösterreichs an über 50%, im Südosten an über 60% der Tage. Deutliche Überschreitungen traten bei den Critical Levels zum Schutz des Waldes und landwirtschaftlicher Nutzpflanzen in fast ganz Österreich auf. Der Zielwert zum Schutz der Vegetation der neuen Ozon-RL 2002/3/EG wurde an 70% der österreichischen Messstellen überschritten.

Anders als die Kurzzeit-Spitzenwerte zeigen die Überschreitungen der Zielwerte und Schwellenwerte zum Schutz der menschlichen Gesundheit und der Vegetation in den letzten 10 Jahren einen leicht ansteigenden Trend; im Großteil Österreichs wiesen die Jahre 2000 und 2002 die höchsten Belastungen auf, wobei im Südosten im Jahr 2002 besonders hohe Überschreitungshäufigkeiten registriert wurden.

Staubniederschlag wird schwerpunktmäßig vor allem im Bereich größerer Industrieanlagen und in größeren Städten gemessen. Grenzwertverletzungen traten 2002 in Arnoldstein, Kapfenberg und Leoben auf. Die Grenzwerte für Blei und Cadmium im Staubniederschlag wurden in Arnoldstein und Brixlegg überschritten.

2 Executive Summary

The legal regulations for air quality control and assessment in Austria are stipulated in the Ozone Act (Federal Law Gazette 210/92 implementing EU Directive 92/72/EEC), the Air Quality Protection Act (IG-L; Federal Law Gazette I 62/2001) and its ordinances. Table 1 shows the current limit and target values for ambient air in Austria.

Table 1. I imit and ta	arget values according	g to the Air Qualit	v Protection Act
rabio ii. Eiiiii aiia ta	inget variace according	g to the fill watch	y 1 10t00t1011 1 tot

Substance	Receptor	Concentration in µg/m³	Averaged over	Remark
SO ₂	humans	200 ¹ /350	0,5 hrs	Limit value
SO ₂	humans	120	1 day	Limit value
SO ₂	ecosystems	20	1 calendar year	Limit value
SO ₂	ecosystems	20	winter ²	Limit value
NO ₂	humans	200	0,5 hrs	Limit value
NO ₂	humans	80	1 day	Target value
NO ₂	humans	30 ³	1 calendar year	Limit value
NO_X	vegetation	30	1 calendar year	Limit value
Particulate Matter ⁴	humans	150	1 day	Limit value
PM10	humans	50 ⁵	1 day	Limit value
PM10	humans	40	1 calendar year	Limit value
PM10	humans	50 ⁶	1 day	Target value
PM10	humans	20	1 calendar year	Target value
CO	humans	10 mg/m³	8 hrs	Limit value
Benzene	humans	5	1 calendar year	Limit value
Lead	humans	0,5	1 calendar year	Limit value
Ozone	humans	110	8 hrs ⁷	Target value

This report presents the results of the ambient air quality measurements conducted according to the Air Quality Act, Austrian Federal Law Gazette I 62/2001, in Austria in 2002. The report also comprises results of explorative measurements of PM2.5.

In 2002 PM10 data were available for whole Austria the first time. The PM10 limit value -35 days with concentrations above $50 \mu g/m^3$ - has been exceeded in several regions of Austria. The highest polluted sites are kerbside locations in large cities,

 $^{^{1}}$ may be exceeded up to 3 times per day, but not more than 48 times per year, provided that concentration is below 350 $\mu g/m^{3}$

² Period from 1 October until 31 March

 $^{^3}$ Limit value to be attained from 2012. The margin of tolerance is 30 μ g/m 3 until 31-12-2001 reducing on 1 January 2002 and every 12 months thereafter by 5 μ g/m 3 until 1-1- 2005. The margin of tolerance is 10 μ g/m 3 from 1-1- 2005 until 31-12-2009. The margin of tolerance is 5 μ g/m 3 from 1-1- 2010 until 31-12-2011.

⁴ Measured as Total Suspended Particulates (TSP)

⁵ Not to be exceeded more than 35 times per calendar year

⁶ Not to be exceeded more than 7 times per calendar year

⁷ from midnight until 8 a.m., 8 a.m. - 4 p.m., 4 p.m. until midnight and from noon until 8 p.m..

especially in Graz, industrial sites like Linz, but also several smaller towns. In alpine basins and valleys the unfavourable dispersion conditions are a key factor for high PM10 pollutions even in smaller towns. In north-eastern Austria, obviously large-scale high PM10 levels cause limit value exceedances also in rural regions. In this region, PM10 transport from the east plays a major role. The high PM2,5 portion of 78% to PM10 and chemical analyses performed 1999/2000 hint at a high contribution of secondary aerosols. Quite low PM10 levels are observed at rural kerb-side locations compared to urban traffic related sites.

Whereas at 37 sites in Austria more than 35 daily means above 50 $\mu g/m^3$ have been recorded, only at two sites the limit value for the annual mean (40 $\mu g/m^3$) is exceeded.

Total suspended particulates show a similar pattern like PM10; limit value exceedances were observed at kerb-side in large towns and industrial locations, especially Linz.

Limit values for sulphur dioxide where exceeded at some industrial sites and at the Slovenian border.

The short term limit value for NO_2 was exceeded at some urban traffic sites. The sum of limit value and margin of tolerance for the annual mean value (55 μ g/m³) was exceeded in Vienna, Salzburg and the Lower Inn Valley. Nevertheless, the limit value itself (30 μ g/m³) has been exceeded at several urban and kerb-side locations.

No limit value exceedances have been recorded for CO, lead and benzene.

The target value for ozone has been exceeded throughout Austria, the highest pollution levels occur in alpine regions and in north-eastern Austria. In larger cities, the target value was exceeded at up to 60 days, in rural regions in north-eastern Austria up to 80 days. The target value for the protection of the vegetation (Directive 92/72/EEC) was exceeded in higher alpine regions on more than 90% of the year, in extra-alpine lowlands and hilly terrains during more than 50% of the year. The target value of Directive 2002/3/EC (AOT40) has been exceeded at more than 70% of the Austrian monitoring stations.

The limit values for particulate deposition are exceeded at some industrial sites.

The sum of limit value and margin of tolerance according to the first Air Quality Daughter Directive 1999/30/EC (1st AQDD) for the annual mean of NO₂ was exceeded at Vomp, A12 Raststätte and Vienna, Hietzinger Kai. For the daily mean of PM10 the sum of limit value and margin of tolerance was exceeded at Graz Don Bosco, Graz Mitte, Graz Ost and Feldkirch. At Graz Don Bosco also the sum of limit value and margin of tolerance of 1st AQDD for the annual mean of PM10 was exceeded.

There were no further exceedances of limit values including the margin of tolerance as laid down in 1st AQDD and 2nd AQDD (2000/69/EC).

3 Einleitung

3.1 Das Immissionsschutzgesetz - Luft

Der vorliegende Bericht bietet einen Überblick über die Immissionssituation in Österreich im Jahr 2002. Basis für die Beschreibung sind dabei die Immissionsmessungen, die im Rahmen des Vollzugs des Immissionsschutzgesetzes Luft (IG-L, BGBI. I Nr. 115/97, idgF. BGBI. I Nr. 62/2001) sowie der dazugehörigen Messkonzept-VO durchgeführt werden (BGBI. II Nr. 358/1998 idF BGBI. II Nr. 344/2001).

Das IG-L legt Grenzwerte zum Schutz der menschlichen Gesundheit für die Luftschadstoffe Schwefeldioxid (SO_2), Gesamtschwebestaub (TSP), PM10, Stickstoffdioxid (NO_2), Kohlenstoffmonoxid (CO), Blei im Schwebestaub (Pb), Benzol sowie für den Staubniederschlag und dessen Inhaltsstoffe Blei und Kadmium fest. Für Ozon wurde ein Zielwert festgelegt. Für NO_2 und SO_2 wurden Alarmwerte festgesetzt, für die Schadstoffe PM10 und NO_2 darüber hinaus Zielwerte zum langfristigen Schutz der menschlichen Gesundheit.

In einer Verordnung zum IG-L wurden Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation festgelegt (BGBI. II Nr. 298/2001).

Die folgenden Tabellen enthalten die entsprechenden Werte.

Tabelle 4: Immissionsgrenzwerte gemäß IG-L, Anlage 1, zum langfristigen Schutz der menschlichen Gesundheit; gültig seit 7.7.2001

Schadstoff	Konzentration	Mittelungszeit
SO ₂	120 μg/m³	Tagesmittelwert
SO ₂	200 μg/m³	Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu $350~\mu g/m^3$ gelten nicht als Überschreitung
TSP	150 μg/m³	Tagesmittelwert
PM10	50 μg/m³	Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: bis 2004: 35, von 2005 bis 2009: 30, ab 2010: 25
PM10	40 μg/m³	Jahresmittelwert
CO	10 mg/m³	Gleitender Achtstundenmittelwert
NO_2	200 μg/m³	Halbstundenmittelwert
NO ₂	30 μg/m³ (2002: 55 μg/m³ inkl. Toleranz-marge)	Jahresmittelwert Der Grenzwert ist ab 1.1.2012 einzuhalten, die Toleranzmarge beträgt 30 $\mu g/m^3$ bei Inkrafttreten dieses Gesetzes (d.h. 2001) und wird am 1.1. jedes Jahres bis 1.1.2005 um 5 $\mu g/m^3$ verringert. Die Toleranzmarge von 10 $\mu g/m^3$ gilt gleichbleibend von 1.1.2005 bis 31.12.2009. Die Toleranzmarge von 5 $\mu g/m^3$ gilt gleichbleibend von 1.1.2010 bis 31.12.2011.
Benzol	5 μg/m³	Jahresmittelwert
Blei	0,5 μg/m³	Jahresmittelwert

Tabelle 5: Depositionsgrenzwerte gemäß IG-L Anlage 2 zum langfristigen Schutz der menschlichen Gesundheit, gültig seit 1.4.1998

Luftschadstoff	Depositionswerte in mg/(m².d) als Jahresmittelwert
Staubniederschlag	210
Blei im Staubniederschlag	0,100
Cadmium im Staubniederschlag	0,002

Tabelle 6: Immissionszielwert für Ozon gemäß IG-L Anlage 3 zum langfristigen Schutz der menschlichen Gesundheit, gültig seit 1.4.1998

Schadstoff	Konzentration	Mittelungszeit
O ₃	110 μg/m³	Achtstundenmittelwerte über die Zeiträume 0 bis 8 Uhr, 8 bis 16 Uhr, 16 bis 24 Uhr sowie 12 bis 20 Uhr

Tabelle 7: Alarmwerte gemäß IG-L Anlage 4; in Kraft seit 7.7.2001

Schadstoff	Konzentration	Mittelungszeit		
SO ₂	500 μg/m³	gleitender Dreistundenmittelwert		
NO ₂	400 μg/m³	gleitender Dreistundenmittelwert		

Tabelle 8: Zielwerte gemäß IG-L Anlage 5; in Kraft seit 7.7.2001

Schadstoff	Konzentration	Mittelungszeit			
PM10	50 μg/m³	Tagesmittelwert; bis zu 7 Tagesmittelwerte Kalenderjahr gelten nicht als Überschreitung	über	50 μg/m³	pro
PM10	20 μg/m³	Jahresmittelwert			
NO ₂	80 μg/m³	Tagesmittelwert			

Tabelle 9: Grenz- und Zielwerte zum Schutz von Ökosystemen und der Vegetation (BGBl. II 2001/298)

Schadstoff	Konzentration	Mittelungszeit	Art
NO _X ⁸	30 μg/m³	Jahresmittelwert	Grenzwert
SO ₂	20 μg/m³	Jahresmittelwert und Wintermittelwert	Grenzwert
NO_2	80 μg/m³	Tagesmittelwert	Zielwert
SO ₂	50 μg/m³	Tagesmittelwert	Zielwert

Eine Zusammenstellung der Grenz-, Ziel- und Schwellenwerte verschiedener EU-Richtlinien findet sich in Anhang 1.

 $^{^{8}}$ zu berechnen als Summe der Volumensanteile von NO und NO $_{\!2},$ angegeben als NO $_{\!2}$

3.2 Die Messkonzept-Verordnung zum IG-L

Die Messungen zur Überwachung der Einhaltung der Grenzwerte erfolgen an ausgewählten Messstellen; Details der Messung wie Kriterien für Lage und Anzahl der Messstellen und technische Anforderungen sind in der Messkonzept-Verordnung zum IG-L (BGBI. II 358/98, idgF. BGBI. II 344/2001) festgelegt. §6 der Messkonzept-VO legt die Mindestanzahl der Messstellen in den einzelnen Untersuchungsgebieten fest. Der Betrieb der Luftgütemessstellen obliegt gemäß IG-L §5(1) den Ämtern der Landesregierungen, welche sich zur Messung der Hintergrundbelastung der Messstellen des Umweltbundesamtes zu bedienen haben. Es steht den Landeshauptleuten frei, zusätzliche Messstellen zu betreiben. So übersteigt die Anzahl der gemäß IG-L betriebenen Messstellen für SO₂, Gesamtschwebestaub, PM10, NO₂, CO und Ozon in den meisten Untersuchungsgebieten die in §6 vorgegebene Anzahl, während bei Blei und Benzol, deren Messung erst in den letzten Jahren begonnen wurde, die in §6 vorgegebene Messstellenzahl in einigen Untersuchungsgebieten noch nicht erreicht wurde. Tabelle 10 und Tabelle 11 enthalten die entsprechenden Zahlenangaben.

Tabelle 10: Anzahl der Messstellen gemäß Messkonzept sowie Meldungen der Messnetzbetreiber 2002.

Schadstoff	Mindestanzahl gemäß Messkonzept-VO	gemeldet 2002	insgesamt 2002 betrieben
SO ₂	79	121 ⁹	138
NO_2	77	138 ¹⁰	147
CO	29	44	48
Schwebestaub	37	71	86 ¹¹
PM10	34	66	78
Blei	15	13	14
Benzol	17	16	19
O ₃	81	106, 111 ¹²	113
Staubniederschlag	nicht festgelegt	156	156
Pb, Cd im STN	nicht festgelegt	113	113

⁹ 16 davon zur Überwachung der Grenzwerte zum Schutz der Ökosysteme

¹⁰ 15 davon zur Überwachung der Grenzwerte zum Schutz der Vegetation

¹¹ Die Messung und Bewertung der Schwebestaubkonzentration erfolgt teilweise an Messstellen, an denen auch PM10 gemessen wird. An 12 Messstellen wird die Schwebestaub-Konzentration aus PM10-Messwerten mit einem Faktor 1,2 (gemäß Messkonzept-VO) ermittelt.

¹² gemäß Ozongesetz 111 Messstellen, von diesen 106 auch gemäß IG-L.

	Anzahl gemäß MKV	gemeldet ¹³	in Betrieb
Burgenland	3	3 (1)	3 (1)
Kärnten	3	3 (1)	4 (1)
Niederösterreich	5	14	18
Oberösterreich	6	14	14
Salzburg	6	5 (1)	6 (1)
Steiermark	5	10	13
Tirol	2	11	11
Vorarlberg	2	2	2
Wien	5	1	1 (1 ¹⁴)
Summe	34	63 (3)	74 (4)

Tabelle 11: Anzahl der PM10-Messstellen 2002

Die Messkonzept-VO sieht zudem vor, dass für die Messungen gemäß IG-L umfangreiche qualitätssichernde Maßnahmen zur Absicherung der Messdaten durchgeführt werden müssen.

In dem vorliegenden Bericht werden die Ergebnisse aller Messstellen dokumentiert, d.h., auch jener, die nicht im Sinne des IG-L betrieben wurden. Diese werden gesondert gekennzeichnet.

In Abschnitt 6 der Messkonzept-VO sind die Berichtspflichten über die Immissionssituation festgelegt. Gemäß §31 (2) hat das Umweltbundesamt im ersten Halbjahr des Folgejahres einen bundesweiten Jahresbericht über die Ergebnisse der Messungen von Benzol und von Blei im Schwebestaub und einen österreichweiten Übersichtsbericht über die Ergebnisse der Messungen der übrigen Luftschadstoffe zu veröffentlichen. Dieser Bericht hat jedenfalls die Jahresmittelwerte sowie Angaben über Überschreitungen der in den Anlagen 1 bis 3 IG-L genannten Grenz- und Zielwerte zu beinhalten. Der Jahresbericht, der vom Umweltbundesamt erstellt wird, schließt auch die Ergebnisse der im Rahmen der Import-Export-Messung durchgeführten Messungen ein.

Der vorliegende Bericht enthält somit eine Übersicht über die Immissionssituation in Österreich im Jahr 2002. Im Umweltbundesamt-Jahresbericht 2002 werden im Detail die Ergebnisse jener Messungen, die an den vom Umweltbundesamt betriebenen Messstellen erhoben wurden, beschrieben.

Ein Glossar und Abkürzungen findet sich in Anhang 2, Anhang 3 umfasst Einheiten und Umrechnungsfaktoren, Anhang 4 die Definition von Mittelwerten.

Die Messstellen sind im Einzelnen in Anhang 5 angeführt; dabei sind jene Messstellen gekennzeichnet, die 2002 im Rahmen des IG-L betrieben wurden. Angegeben sind die Verfügbarkeit der Messdaten, jene Maximalwerte, die für die Beurteilung von Grenzwertüberschreitungen herangezogen werden, die Anzahl der Grenzwertverletzungen sowie die ermittelten Jahresmittelwerte der Belastung. Nähere Angaben über die Lage der Messstellen sind dem Bericht "Luftgütemessstellen in Österreich" (SPANGL 2002a) zu entnehmen. Eine detailliertere Beschreibung der Messergeb-

-

¹³ in Klammer: zusätzliche Messstellen des Umweltbundesamtes

¹⁴ Forschungsmessstelle Wien Erdberg

nisse sowie der eingesetzten Messmethoden sind den Jahresberichten der einzelnen Messnetzbetreiber zu entnehmen.

Der Schwerpunkt der Messung liegt in bewohnten Gebieten und hier insbesondere in größeren Städten. Österreich hat generell in Bezug auf die klassischen Luftschadstoffe ein relativ dichtes Messnetz. Dabei ist jedoch zu beachten, dass die Schadstoffbelastung kleinräumig großen Variationen unterliegen kann und zwar insbesondere im Nahbereich von Emittenten. So kann etwa die NO₂-Belastung in einigen zehn Metern Entfernung zu großen Straßen bereits signifikant abnehmen.

3.3 Ozongesetz und EU-Richtlinien

Warnwerte wurden im Bundesgesetz über Maßnahmen zur Abwehr der Ozonbelastung und über die Information der Bevölkerung über hohe Ozonbelastungen, mit dem das Smogalarmgesetz (BGBI. 38/1989) geändert wird (Ozongesetz), BGBI. 210/1992 gemäß Anlage 1 festgelegt (in Kraft bis 30.6.2003).

Tabelle 12: Warnwerte gemäß Ozongesetz BGBI. 210/1992

Warnwert	Konzentration	Mittelungszeit
Vorwarnstufe	200 μg/m³	Gleitender Dreistundenmittelwert
Warnstufe 1	300 μg/m³	Gleitender Dreistundenmittelwert
Warnstufe 2	400 μg/m³	Gleitender Dreistundenmittelwert

Eine Warnstufe ist auszulösen, wenn der entsprechende Warnwert an mindestens zwei Messstellen eines Ozonüberwachungsgebietes (diese sind in VO BGBI. 513/1992 bzw. BGBI. II 359/98 festgelegt) überschritten wird und die Wetterlage ein Anhalten oder Ansteigen der Belastung erwarten lässt.

In der Richtlinie 92/72/EWG des Rates vom 21. September 1992 über die Luftverschmutzung durch Ozon werden Schwellenwerte für die Ozonkonzentration in der Luft sowohl zum Schutz des Menschen als auch zum Schutz der Vegetation festgelegt.

Tabelle 13: Schwellenwerte gemäß Richtlinie 92/72/EWG

Schutzgut	Konzentration	Mittelungszeit
Gesundheitsschutz	110 μg/m³	Achtstundenmittelwerte über die Zeiträume 0 bis 8 Uhr, 8 bis 16 Uhr, 16 bis 24 Uhr sowie 12 bis 20 Uhr
Schutz der Vegetation	200 μg/m³	Nicht gleitender Einstundenmittelwert
Schutz der Vegetation	65 μg/m³	Tagesmittelwert
Unterrichtung der Bevölkerung	180 μg/m³	Nicht gleitender Einstundenmittelwert
Auslösung des Warnsystems	360 μg/m³	Nicht gleitender Einstundenmittelwert

Ausblick

Mit der Novelle zum Ozongesetz vom 1.Juli 2003 wurden die Vorwarnstufe und die Warnstufen für Ozon aufgehoben und die Informationsschwelle und Alarmschwelle eingeführt (BGBI. Nr. 210/1992 zuletzt geändert durch das BGBI. I Nr. 34/2003 lt. EU-RL 2002/03/EG). Darüber hinaus wurden Zielwerte und langfristige Ziele zum Schutz des Menschen und der Vegetation festgelegt.

Tabelle 14: Informations- und Alarmschwelle sowie Zielwerte zum Schutz des Menschen und der Vegetation gemäß BGBl. Nr. 34/2003 und EU-RL 2002/30/EG

Informations- und Warnwerte				
Informationsschwelle	180 μg/m³	Einstundenmittelwert		
Alarmschwelle	240 μg/m³	Einstundenmittelwert		
Zielwerte				
Gesundheitsschutz	120 μg/m ³	Höchster Achtstundenmittelwert des Tages, darf an höchstens 25 Tagen pro Kalenderjahr überschritten werden, gemittelt über 3 Jahre		
Schutz der Vegetation	18.000 μg/m³.h	AOT40, Mai – Juli, 8:00 – 20:00 MEZ gemittelt über 5 Jahre		
Langfristige Ziele	Langfristige Ziele			
Gesundheitsschutz	120 μg/m ³	Höchster Achtstundenmittelwert des Kalenderjahres		
Schutz der Vegetation	6.000 µg/m³.h	AOT40, Mai – Juli, 8:00 – 20:00 MEZ		

18	Jahresbericht der Luftgütemessungen in Österreich 2002

4 Ergebnisse der Immissionsmessungen

4.1 Schwebestaub und PM10

4.1.1 Anzahl der Messstellen zur Kontrolle der Einhaltung der Gesamtschwebestaub- und PM10-Grenzwerte

Wurden im Jahr 2000 noch 125 Gesamtschwebestaubmessstellen betrieben, so erfolgte im Vorfeld der Einführung der Grenzwerte für PM10 im IG-L die schrittweise Umstellung der Messung auf PM10, welche im Jahr 2003 abgeschlossen sein soll.

Die Mindestanzahl der Schwebestaubmessstellen gemäß der bis November 2001 gültigen Messkonzept-VO betrug 71 Messstellen, die Novelle der Messkonzept-VO 2001 schreibt die Erhebung der Schwebestaubbelastung nur noch an 37, jene der PM10-Konzentration an 34 Standorten vor. In jedem Untersuchungsgebiet sowie in den Ballungsgebieten ist mindestens eine Messstelle für PM10 in unmittelbarer Nähe einer stark befahrenen Straße im Siedlungsgebiet zu betreiben. Ende 2001 waren 98 Messstellen für Schwebestaub (davon 89 gemäß IG-L) und 67 Messstellen für PM10 (davon 53 gemäß IG-L) in Betrieb, wobei an mehreren Messstellen beide Staubfraktionen gemessen wurden.

Die fortschreitende Umstellung auf PM10 reduzierte die Zahl der Schwebestaubmessstellen 2002 auf 85 (davon 71 gemäß IG-L), während PM10 an 78 Messstellen (davon 66 gemäß IG-L) gemessen wird. Dabei ist zu berücksichtigen, dass an 12 der Schwebestaubmessstellen (jene im Burgenland und in Tirol) PM10 gemessen und die Schwebestaubkonzentration aus den PM10-Messwerten mit einem Faktor 1,2 abgeleitet wird.

4.1.2 Die Gesamtschwebestaubbelastung 2002

Die Schwerpunkte der Schwebestaubbelastung stellten im Jahr 2002, wie schon in früheren Jahren, die Ballungsgebiete Linz, Graz und Wien sowie Innsbruck dar (Abbildung 1)¹⁵.

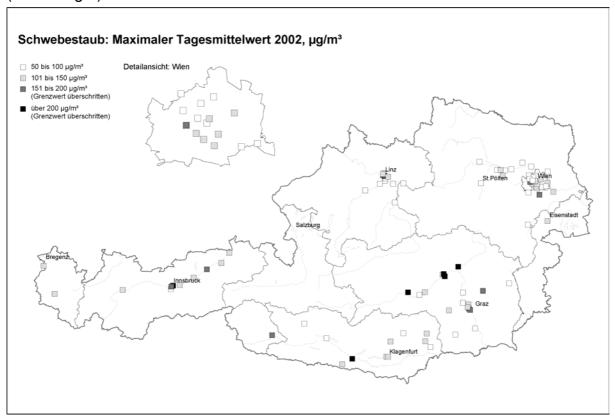


Abbildung 1: Maximaler Tagesmittelwert von TSP, 2002

Der Grenzwert des IG-L 150 μ g/m³ als TMW wurde im Jahr 2002 an 14 gemäß IG-L betriebenen sowie an 2 weiteren Messstellen überschritten; die Überschreitungen sind in Tabelle 15 zusammengestellt.

Die zahlreichen Überschreitungen am 15.11. waren die Folge von Staub-Fernverfrachtung aus Nordafrika.

Umweltbundesamt/Federal Environment Agency – Austria

¹⁵ Im Bundesland Salzburg wurde Anfang 2002 die Schwebestaubmessung vollständig auf PM10 umgestellt, es liegen daher keine Daten für Schwebestaub vor.

Tabelle 15: Überschreitungen des IG-L-Grenzwertes für Schwebestaub von 150 μg/m³ als TMW im Jahr 2002

Gebiet	Messstelle	Anzahl TMW > 150 μg/m³	max. TMW (μg/m³)	IG-L	Datum
K	Villach	1	242	ja	15.11.
N	Himberg	1	161	nein	2.1.
BG Linz	Linz ORF-Zentrum	6	216	ja	23.1., 1.2., 4.2., 5.2., 13.11., 25.11.
BG Linz	Linz Neue Welt	1	153	ja	5.2.
BG Graz	Graz Don Bosco	1	154	nein	30.1.
BG Graz	Graz Süd	2	176	ja	30.1., 31.1.
St	Kapfenberg	1	209	ja	15.11.
St	Leoben Göss	1	211	ja	15.11.
St	Leoben Zentrum	1	247	ja	15.11.
St	Pöls Ost	1	207	ja	15.11.
St	Weiz	1	152	ja	30.1.
Т	Brixlegg	1	158	ja	12.1.
Т	Innsbruck Reichenau	8	208	ja	8.1., 9.1., 15.1., 16.1., 17.1., 18.1., 19.1., 30.1.
Т	Innsbruck Zentrum	1	161	ja	8.1.
T	Lienz	1	170	ja	7.1.
W	Wien Kendlerstr.	1	157	ja	30.1.

Alle Grenzwertverletzungen traten im Winter auf und sind durch die ungünstigen Schadstoffausbreitungsbedingungen mit bedingt.

Bei der Bewertung der Schwebestaubbelastung ist zu berücksichtigen, dass die Messung 2002 an mehreren Messstellen beendet wurde, weil auf PM10 umgestellt wurde, sodass u.a. hoch belastete Messstellen in Graz, Leoben und Wien nicht mehr in Betrieb sind. Dennoch zeigen die vorliegenden Messdaten, dass die Schwebestaubbelastung im Jahr 2002 insgesamt höher als 2001 war, wobei vor allem in Linz und Innsbruck zahlreiche Grenzwertüberschreitungen auftraten.

Die höchsten Tagesmittelwerte wurden mit über 200 μ g/m³ in Leoben Zentrum (247 μ g/m³), Villach, Linz ORF-Zentrum, Kapfenberg, Leoben Donawitz, Pöls und Innsbruck Reichenau registriert.

Die höchsten Jahresmittelwerte (über 40 μg/m³) wurden an den Messstellen Klagenfurt Völkermarkterstr., St. Veit a.d.G., Linz ORF-Zentrum, Graz Süd, Graz West, Graz Don Bosco, Wien Rinnböckstr. und Wien Taborstr. erfasst.

Trend

Die Schwebestaubbelastung ging im Verlauf der Neunzigerjahre in ganz Österreich tendenziell zurück. Die deutlichste Abnahme ist in Kärnten (am stärksten in Klagenfurt Völkermarkterstraße und Wolfsberg) und an einigen generell hoch belasteten Wiener Messstellen (v.a. Belgradplatz, Floridsdorf, Liesing und Taborstr.) zu beobachten. Einen Sonderfall stellt Leoben Donawitz dar, wo zwischen 1995 und 1998 außerordentlich hohe Schwebestaubkonzentrationen registriert wurden; seit 1999 lag die Belastung aber unter dem Niveau der frühen Neunzigerjahre (Ende der Messung Anfang 2002). Dies ist auf emissionsmindernde Maßnahmen der nahegelegenen Industriebetriebe zurückzuführen.

Das Jahr 2002 wies im Großteil Österreichs eine ähnliche Belastung auf wie die vorhergehenden Jahre seit 1998. Eine deutliche Zunahme verzeichneten Linz ORF-Zentrum (wo 2002 mit 47 µg/m³ der höchste Jahresmittelwert in Österreich registriert wurde), die Messstellen in Innsbruck und einzelne Messstellen in Graz und Wien (v.a. Belgradplatz, Floridsdorf, Rinnböckstr. und Taborstr.), während die Schwebestaubkonzentration u.a. in Wien Stephansplatz zurückging. Den stärksten Rückgang weist die Schwebestaubbelastung in den letzten Jahren in Wolfsberg und Lienz auf.

Die Entwicklung der Schwebestaubbelastung wird stark von den lokalen Emissionen – vor allem im Bereich von Industriestandorten wie etwa Linz und Leoben – und von den meteorologischen Bedingungen bestimmt. So dürften die relativ milden Winter seit 1997/98 für den seit damals zu beobachtenden Rückgang der Schwebestaubbelastung wesentlich mit verantwortlich sein.

Das Umweltbundesamt hat für die Jahre 1990, 1995, 2000 und 2001 die Gesamtschwebestaubemissionen für Österreich abgeschätzt (ANDERL, 2003). Nach dieser Inventur hat es zwar bei den pyrogenen Emissionen (das sind jene Staubemissionen, die bei Verbrennungsprozessen entstehen) einen Rückgang gegeben, nicht aber bei den diffusen Staubemissionen. Nach dieser Inventur blieben die Gesamtschwebestaubemissionen fast konstant, was nicht mit dem überwiegend abnehmenden Trend der Gesamtschwebestaubkonzentrationen korrespondiert. Wodurch der Rückgang der gemessenen Staubimmissionen tatsächlich zurückzuführen ist, muss also im Detail noch untersucht werden (siehe auch Abschnitt über PM10). Im Jahr 2001 stiegen die PM10-Emissionen aufgrund stärkeren Verkehrsaufkommens leicht an.

Abbildung 2 gibt für jene 48 Messstellen, die im Zeitraum 1993 bis 2002 in Betrieb waren, den Mittelwert, den Maximalwert, den Minimalwert und das 95-Perzentil der Jahresmittelwerte (JMW) der Schwebestaubkonzentration an. Die Auswertung stützt sich nur auf durchgehend in Betrieb befindliche Messstellen und umfasst somit nicht aufgelassene hoch belastete Stationen wie Salzburg Rudolfsplatz oder Wien Hietzinger Kai oder erst in den letzten Jahren neu errichtete Stationen wie Graz Don Bosco¹⁶.

_

¹⁶ Der höchste JMW unter diesen Messstellen wurde 1993, 1999 und 2000 in Wien Taborstr., 1994 in Villach, 1995 bis 1998 in Klagenfurt Völkermarkterstr., 2001 in St. Veit a.d.G. und 2002 in Linz ORF-Zentrum registriert.

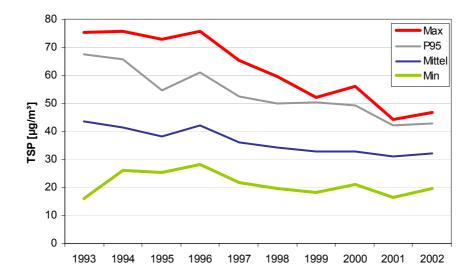


Abbildung 2: Maximal-, Mittel- und Minimalwert sowie das 95 Perzentil des JMW von TSP (48 Messstellen).

Abbildung 3 zeigt den Verlauf des Jahresmittelwerte an ausgewählten hoch belasteten Messstellen für den Zeitraum 1985 bis 2002.

Abbildung 3: Jahresmittelwerte der Schwebestaubkonzentration an ausgewählten Messstellen, 1985 bis 2002

4.1.3 Die PM10-Belastung im Jahr 2002

Im Jahr 2002 wurden insgesamt 78 PM10-Messstellen, davon 66 gemäß IG-L betrieben. An 17 Messstellen wurde die PM10-Konzentration mittels Gravimetrie bestimmt, an 70 Messstellen mittels kontinuierlicher Messverfahren (β-Absorption oder TEOM); an 9 Messstellen erfolgt die PM10-Messung parallel durch Gravimetrie und kontinuierliche Messung. Bei jenen Messstellen, an denen beide Messmethoden zur Anwendung kommen, werden die gravimetrischen Daten zur Beurteilung der PM10-Belastung gemäß IG-L herangezogen.

Bei der Verwendung von kontinuierlichen Messverfahren für die PM10-Bestimmung sind die so erhaltenen Messwerte mit einem Standortfaktor bzw. einer lokalen Standortfunktion zu korrigieren; diese sind durch Vergleichsmessungen zu bestimmen. Angaben zu den 2001 und 2002 durchgeführten Vergleichmessungen findet man in Anhang 7, wo auch auf die Unsicherheiten bei der Ableitung der Standortfunktionen hingewiesen wird. Vergleichsmessungen wurden in den Bundesländern Niederösterreich, Oberösterreich und Salzburg durchgeführt, wobei in Oberösterreich für die Daten von 2002 Standortfaktoren zwischen 1,09 und 1,19, in Salzburg 1,00 verwendet wird. Für alle anderen österreichischen Messstellen (einschließlich Niederösterreich) wird der Default-Faktor von 1,3 verwendet.

Eine ausführliche Dokumentation des Vergleichs zwischen gravimetrischer Messung und β -Absorption an jenen Messstellen, an denen längere Parallelmessungen durchgeführt wurden, findet sich in Anhang 7 sowie im Jahresbericht des Umweltbundesamtes 2002.

Tabelle 16 enthält eine Zusammenstellung der Verfügbarkeit der PM10-Daten; diese bezieht sich bei der gravimetrischen Messung auf Tagesmittelwerte, bei der kontinuierlichen Messung auf Halbstundenmittelwerte.

Tabelle 16: Übersicht über die Verfügbarkeit der PM10-Daten

	Gravimetrie	kontinuierliche Messung
IG-L-Messstellen	> 90% an 13 Messstellen < 75% an 1 Messstelle	> 90% an 48 Messstellen 75 – 90% an 8 Messstellen < 75% an 2 Messstellen
weitere Messstellen	>90% an 2 Messstellen < 75% an 1 Messstelle	> 90% an 1 Messstelle 75 – 90% an 2 Messstellen < 75% an 6 Messstellen

Der Grenzwert gemäß IG-L – mehr als 35 TMW über 50 $\mu g/m^3$ im Jahr 2002 – wurde an 37 Messstellen überschritten, und zwar an den in Tabelle 17 angeführten Messstellen.

Der als Jahresmittelwert definierte Grenzwert von 40 $\mu g/m^3$ wurde lediglich an den beiden Messstellen Graz Don Bosco und Graz Mitte überschritten. Das Grenzwert-kriterium für den Tagesmittelwert ist somit wesentlich strenger als der Jahresmittelwert von 40 $\mu g/m^3$.

Die Anzahl der TMW über 50 $\mu g/m^3$, der maximale TMW und der JMW an diesen Messstellen sind in Tabelle 17 zusammengefasst.

Tabelle 17: Überschreitungen des IG-L-Grenzwertes für PM10 (mehr als 35 TMW über 50 μg/m³) 2002. Messmethoden: g gravimetrisch, β β-Absorption, T TEOM

Gebiet	Messstelle	IG-L	Methode	Anzahl TMW > 50 µg/m³	max. TMW (μg/m³)	JMW (µg/m³)
В	Eisenstadt	ja	ß	39	84	29
В	Illmitz	ja	g	45	104	29
В	Kittsee	ja	ß	53	87	31
K	Klagenfurt Völkermarkterstr.	ja	g	58	127	37
N	Amstetten	ja	T	42	135	33
N	Hainburg	ja	Т	63	83	33

Gebiet	Messstelle	IG-L	Methode	Anzahl TMW > 50 μg/m³	max. TMW (μg/m³)	JMW (µg/m³)
N	Himberg	ja	Т	52	90	33
N	Klosterneuburg	ja	Т	61	90	33
N	Mannswörth	nein	Т	51	126	38
N	Mistelbach	ja	Т	44	101	32
N	Mödling	ja	T	48	94	30
N	Schwechat	ja	Т	69	83	35
N	Stixneusiedl	ja	Т	60	90	33
N	Vösendorf	ja	T	69	88	35
BG Linz	Linz 24er Turm	ja	Т	52	116	32
BG Linz	Linz Neue Welt	ja	g	56	107	34
BG Linz	Linz ORF-Zentrum	ja	g	64	143	35
BG Linz	Linz Römerberg	ja	Т	65	135	36
BG Linz	Steyregg	ja	g	42	123	29
St	Bruck a.d.M.	ja	T	52	203	32
St	Gratwein	ja	Т	36	100	31
BG Graz	Graz Don Bosco	ja	ß	131	229	51
BG Graz	Graz Mitte	ja	Т	99	154	44
BG Graz	Graz Ost	ja	T	72	117	37
St	Hartberg	ja	Т	59	119	37
St	Köflach	ja	Т	85	154	40
St	Peggau	ja	ß	38	118	34
T	Brixlegg	ja	ß	41	132	29
T	Hall i.T.	ja	ß	45	101	29
Т	Innsbruck Reichenau	ja	ß	50	173	31
Т	Innsbruck Zentrum	ja	ß	40	134	29
T	Lienz	ja	ß	37	141	29
T	Vomp – Leiten	ja	ß	37	97	29
Т	Wörgl	ja	ß	42	100	28
V	Feldkirch	ja	g	63	241	38
W	Wien Erdberg	nein	g	55	108	
W	Wien Liesing	ja	g	57	92	31

Abbildung 4 gibt einen Überblick über die PM10 Messstellen sowie die Anzahl der Tage mit TMW>50 µg/m³.

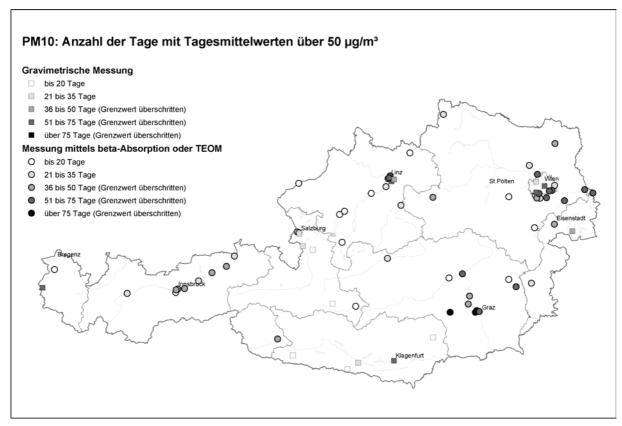


Abbildung 4: Anzahl der Tage mit PM10-Tagesmittelwerten über 50 μg/m³

Die Zusammenstellung der Messmethode, Verfügbarkeit, der maximalen TMW, der TMW über 50 μg/m³ und der JMW findet sich für alle Messstellen im Anhang 5.

Den absoluten Belastungsschwerpunkt stellte, wie schon im Vorjahr, Graz dar. Hier wurden mit 131 TMW über 50 μ g/m³ an der Messstelle Don Bosco und 99 TMW über 50 μ g/m³ an der Messstelle Graz Mitte die höchsten Überschreitungshäufigkeiten sowie die höchsten JMW registriert. Mehr als 70 TMW über 50 μ g/m³ - d.h. das Doppelte der erlaubten Anzahl – wurden zudem an den Messstellen Graz Ost und Köflach registriert, mehr als 60 TMW über 50 μ g/m³ in Hainburg, Klosterneuburg, Schwechat, Vösendorf, Linz ORF-Zentrum, Linz Römerberg und Feldkirch.

Die höchsten TMW (mit mehr als 200 μg/m³) traten in Liezen (301 μg/m³), St. Pölten, Bruck a.d.M., Graz Don Bosco, Niklasdorf und Feldkirch auf.

Besonders hohe Jahresmittelwerte (über 35 μ g/m³) registrierten - neben allen Messtellen in Graz - Klagenfurt Völkermarkterstr., Mannswörth, Linz Römerberg, Hartberg, Köflach und Feldkirch.

In Abbildung 5 ist der Zusammenhang zwischen den Jahresmittelwerten für PM10 (Grenzwert 40 μ g/m³) von 2001 und 2002 und der Anzahl der Tage mit Werten über 50 μ g/m³ dargestellt. Alle Stationen rechts der vertikalen Linie haben mehr als 35 Überschreitungen und weisen damit Grenzwertüberschreitungen (bezogen auf das Kalenderjahr) auf. Demgegenüber wurde der als Jahresmittelwert festgelegte Grenzwert von 40 μ g/m³ in Graz dreimal überschritten (Graz Don Bosco 2001 und 2002, Graz Mitte 2002), was bedeutet, dass der als Tagesmittelwert formulierte

Grenzwert (trotz der erlaubten Anzahl an Überschreitungen) deutlich strenger ist als der Jahresmittelwert.

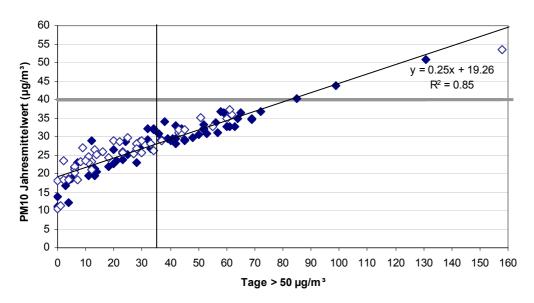


Abbildung 5: Zusammenhang zwischen dem Jahresmittelwert PM10 (Grenzwert 40 μg/m³) und der Anzahl der Tage mit Werten über 50 μg/m³. Offene Symbole 2001, volle Symbole 2002. Trendlinie für den Gesamtdatensatz.

Der Zielwert des IG-L, Anlage 5 (nicht mehr als 7 TMW über 50 μ g/m³) wurde 2002 an 68 Messstellen überschritten. Keine Überschreitungen registrierten lediglich die Messstellen Arnoldstein, Vorhegg, Braunau, Grünbach, St. Koloman, Zederhaus, Masenberg, Gärberbach und Dornbirn.

Der als Zielwert in Anlage 5 festgelegte Jahresmittelwert von 20 $\mu g/m^3$ wurde im Jahr 2001 an allen das ganze Jahr gemäß IG-L betriebenen Messstellen außer Arnoldstein, Vorhegg, Bad Ischl, Grünbach, Salzburg Mirabellplatz, St. Koloman, Zederhaus, Masenberg und Dornbirn überschritten.

Als Belastungsschwerpunkte lassen sich Graz, aber auch andere Städte südlich des Alpenhauptkamms, sowie der Nordosten Österreichs und Linz feststellen.

In Graz und Klagenfurt, aber auch in kleineren Städten wie Bruck a.d.M., Köflach und Hartberg spielen die ungünstigen meteorologischen Bedingungen – hohe Inversionshäufigkeiten – eine wesentliche Rolle für die hohe PM10-Belastung.

Im Nordosten Österreichs weisen nicht nur Wien, sondern auch zahlreiche Kleinstädte in Niederösterreich eine sehr hohe PM10-Belastung auf. Wie die sehr hohe Belastung in Illmitz zeigt, dürfte dafür ein relativ hoher Anteil großflächiger Hintergrundbelastung bzw. Ferntransport von Osten eine wesentliche Rolle spielen. In Kittsee und Hainburg lässt sich auch ein nennenswerter Anteil von grenzüberschreitendem Transport aus dem Ballungsraum Bratislava vermuten. Eine Abschätzung der Hintergrundbelastung in anderen Regionen ist mit den vorliegenden Daten noch nicht möglich.

Im Raum Linz, aber auch in Leoben und Brixlegg, liefern industrielle Emissionen einen wesentlichen Beitrag zur hohen PM10-Belastung.

Grundsätzlich weisen verkehrsnahe städtische Messstellen die höchste PM10-Belastung auf, wofür Graz Don Bosco, Wien Erdberg, Innsbruck Reichenau und

Feldkirch auffallende Beispiele sind. An außerorts gelegenen, auch sehr stark verkehrsbelasteten Messstellen wie Gärberbach, Vomp A12 und Zederhaus ist dagegen die PM10-Belastung vergleichsweise niedrig und liegt unter dem Grenzwert.

Überraschend niedrig ist die PM10-Belastung in Salzburg, welches als einzige größere Stadt Österreichs nicht von Grenzwertverletzungen betroffen ist. Die PM10-Konzentration ist hier im Jahresmittel niedriger als in Kleinstädten Nordostösterreichs.

Trend

Da die PM10-Messung in Österreich erst schrittweise ab 1999 aufgenommen wurde (und die Umstellung von Schwebestaub auf PM10 noch nicht abgeschlossen ist), sind Aussagen über einen langfristigen Trend der PM10-Belastung in Österreich noch nicht möglich.

Für die Messstellen Illmitz, Steyregg und Salzburg Rudolfsplatz, von denen seit 2000 durchgehend PM10-Daten vorliegen, ist in Abbildung 6 die Anzahl der TMW über 50 μ g/m³ dargestellt; in Abbildung 7 die JMW dieser drei Messstellen. Tabelle 18 gibt die Anzahl der TMW über 50 μ g/m³ sowie die JMW jener Messstellen an, die ab 2001 in Betrieb stehen.

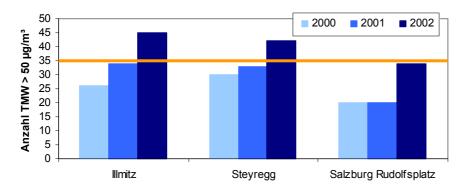


Abbildung 6: Anzahl der TMW über 50 µg/m³, 2000 bis 2002

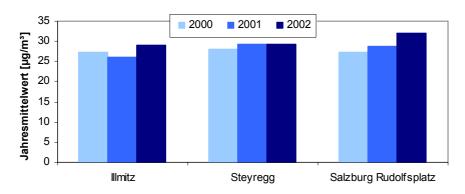


Abbildung 7: PM10 Jahresmittelwerte in Illmitz, Steyregg, Salzburg Rudolfsplatz, 2000 bis 2002

Tabelle 18: PM10, Anzahl der TMW über 50 μg/m³ und Jahresmittelwert, 2000 bis 2002

	Messstelle		W > 50 μg			•	elwert (µg/m³)	
		2000	2001	2002	2000	2001	2002	
В	Eisenstadt		27	39		25	29	
В	Illmitz	26	34	45	27	26	29	
В	Kittsee		18	53		24	31	
В	Oberwart		6	25		21	25	
K	Arnoldstein Kugi		0	5		18	19	
K	Klagenfurt Völkermarkterstr.		60	58		35	37	
K	Villach		13	24		27	29	
K	Vorhegg		0	0		11	11	
0	Bad Ischl		4	13		19	19	
0	Braunau		8	6		23	22	
0	Grünbach		7	4		18	18	
0	Lenzing		12	14		21	21	
0	Linz 24er Turm		37	52		29	32	
0	Linz Neue Welt		43	56		31	34	
0	Linz ORF-Zentrum		55	64		33	35	
0	Linz Römerberg		62	65		36	36	
0	Steyregg	30	33	42	28	29	29	
0	Traun		23	33		26	27	
0	Vöcklabruck		12	12		23	22	
0	Wels		29	12		29	29	
S	Hallein Hagerkreuzung		16	28		26	28	
S	Salzburg Lehen		8	18		24	22	
S	Salzburg Mirabellplatz		23	11		28	20	
S	Salzburg Rudolfsplatz ¹⁷	20	20	34	27	29	32	
S	St. Koloman		1	4		11	12	
S	Tamsweg		6	13		20	21	
St	Bruck a.d.M.		28	52		28	32	
St	Graz Don Bosco		158	131		54	51	
St	Graz Ost		51	72		35	37	
Т	Brixlegg		30	41		29	29	
Т	Gärberbach		2	7		23	23	
Т	Hall i.T.		23	45		26	29	
Т	Innsbruck Reichenau		30	50		26	31	
Т	Innsbruck Zentrum		28	40		27	29	
Т	Kufstein		11	21		23	24	
Т	Lienz		45	37		32	29	
Т	Vomp a.d.L.		25	37		30	29	
Т	Vomp A12		22	29		29	27	
Т	Wörgl		14	42		25	28	

_

 $^{^{17}}$ 1999 Jahresmittelwert 33 $\mu\text{g/m}^{\text{3}}$ (Probenahme jeden zweiten Tag)

Die PM10-Belastung weist innerhalb der letzten drei Jahre tendenziell einen ansteigenden Trend auf. Starke Zunahmen gegenüber den Vorjahren waren 2002 v.a. in Eisenstadt, Illmitz, Kittsee, Oberwart, Linz 24er Turm, Linz Neue Welt, Hallein Hagerkreuzung, Salzburg Rudolfsplatz, Tamsweg, Bruck a.d.M., Graz Ost, Innsbruck Reichenau, Innsbruck Zentrum, Hall i.T. und Wörgl zu verzeichnen, wobei der Jahresmittelwert und die Zahl der TMW über 50 µg/m³ fallweise ein durchaus andersartiges Verhalten zeigen können. Eine deutliche Abnahme verzeichnen dagegen Wels, Salzburg Mirabellplatz, Graz Don Bosco und Lienz.

4.1.4 PM2,5

Gemäß der EU-Richtlinie 1999/30/EG sind die EU-Mitgliedstaaten seit 2001 verpflichtet, PM2,5 an repräsentativen Standorten zu messen. Im Jahr 2002 erfolgte die routinemäßige PM2,5-Erhebung lediglich in Illmitz, sowie im Rahmen einer befristeten Messkampagne zwischen Mai 2001 und Mai 2002 in Wien Erdberg.

Die PM2,5-Konzentration lag in Illmitz im Jahresmittel 2002 bei 23,3 μ g/m³ (PM10 29,1 μ g/m³) und damit höher als 2001 (19,5 μ g/m³). Der mittlere Anteil der PM2,5-Konzentration am PM10 betrug im Jahresmittel 2002, wie auch 2001, 78%.

In Wien Erdberg wurde über den Zeitraum von Mai 2001 bis Mai 2002 eine mittlere PM2,5-Konzentration von 37,1 μ g/m³ (PM10 48,0 μ g/m³) gemessen, der mittlere PM2,5-Anteil am PM10 betrug 75%.

Nähere Angaben zur PM2,5-Belastung findet man im Jahresbericht 2002 der Luftgütemessungen des Umweltbundesamtes.

4.2 Stickstoffdioxid

Der Grenzwert des IG-L in der Höhe von 200 µg/m³ als Halbstundenmittelwert wurde 2002 an den in Tabelle 19 angegebenen Stationen überschritten.

••		
Tabelle 19: Überschreitungen	1 10 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
I ANAIIA 1U: I INAECANEAITI INAAN	ACCII = I I = ICONTWORTOC TUR NII	1 / 7/ 1/ 1 / 1/0//20 0 / 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1

Gebiet	Messstelle	Tage mit Grenzwertüberschreitung	max. HMW (μg/m³)
N	Klosterneuburg	18.6.	251
S	Hallein Hagerkreuzung	10.1.	208
S	Salzburg Lehen	11.1.	251
S	Salzburg Mirabellplatz	11.1.	231
S	Salzburg Rudolfsplatz	11.1.	205
BG Graz	Graz Mitte	21.1., 29.1.	211

Maximale HMW über 80% des Grenzwertes¹⁸ traten an den Messstellen Klagenfurt Völkermarkterstr., Krems, Tulln, Linz Römerberg, Graz Don Bosco, Graz Ost, Graz Süd, Imst, Innsbruck Zentrum, Lienz, Vomp A12, Dornbirn, Feldkirch, Wien Floridsdorf, Gaudenzdorf, Hietzinger Kai, Hohe Warte, Kaiserebersdorf und Taborstr. auf.

¹⁸ Die Verlegung einer Messstelle, an welcher ein Wert von zumindest 80% eines in Anlage 1 IG-L genannten Immissionsgrenzwertes registriert wurde, ist nur dann zulässig, wenn sichergestellt ist, dass der Immissionsschwerpunkt des betreffenden Untersuchungsgebiets auch weiterhin erfasst wird.

Schwerpunkte der NO₂-Spitzenbelastung waren somit im Jahr 2002 die Städte Salzburg und Graz, gefolgt von Wien, Linz und Innsbruck sowie u.a. Kleinstädten in Vorarlberg und Tirol. Hohe NO₂-Spitzenbelastung traten bevorzugt an städtischen verkehrsnahen Standorten, aber auch an der Inntalautobahn und an städtischen Hintergrundmessstellen in Wien und Graz auf.

Das IG-L legt als Grenzwert für NO_2 einen Jahresmittelwert von 30 $\mu g/m^3$ fest, für welchen eine zeitlich variable Toleranzmarge angegeben ist¹⁹. Diese beträgt für das Jahr 2002 25 $\mu g/m^3$. Die Summe aus Grenzwert und Toleranzmarge (d.h. 55 $\mu g/m^3$) wurde im Jahr 2002 an den Messstellen Salzburg Rudolfsplatz, Vomp A12 und Wien Hietzinger Kai überschritten.

Der Grenzwert von 30 $\mu g/m^3$ als Jahresmittelwert wurde 2002 an den in Tabelle 20 angeführten Messstellen überschritten.

Tabelle 20: Überschreitungen des IG-L-Grenzwerts für NO₂ von 30 μg/m³. Überschreitungen des Grenzwertes und der Toleranzmarge (55 μg/m³) sind fett gedruckt.

Gebiet	Messstelle	NO ₂ JMW (μg/m³)
K	Klagenfurt Koschatstr.	32
K	Klagenfurt Völkermarkterstr.	38
K	Villach	31
N	Vösendorf	33
BG Linz	Linz 24er Turm	33
BG Linz	Linz Neue Welt	34
BG Linz	Linz ORF-Zentrum	34
BG Linz	Linz Römerberg	43
BG Linz	Linz Urfahr	32
0	Wels	31
S	Hallein Hagerkreuzung	46
S	Salzburg Lehen	33
S	Salzburg Mirabellplatz	36
S	Salzburg Rudolfsplatz	56
S	Zederhaus	33
BG Graz	Graz Don Bosco	45
BG Graz	Graz Nord	43
BG Graz	Graz Süd	32
Т	Gärberbach	41
Т	Hall i.T.	41
Т	Innsbruck Reichenau	36
T	Innsbruck Zentrum	40
Т	Kufstein	31

¹⁹ Toleranzmarge im Sinne des IG-L bezeichnet das Ausmaß, in dem der Immissionsgrenzwert innerhalb der in Anlage 1 festgesetzten Fristen überschritten werden darf, ohne die Erstellung von Statuserhebungen (§ 8) und Maßnahmenkatalogen (§ 10) zu bedingen.

Umweltbundesamt/Federal Environment Agency - Austria

Gebiet	Messstelle	NO ₂ JMW (μg/m³)
Т	Lienz	34
Т	Vomp A12	61
Т	Vomp – a.d.L.	43
V	Dornbirn	33
V	Feldkirch	46
W	Belgradplatz	37
W	Floridsdorf	33
W	Gaudenzdorf	35
W	Hietzinger Kai	57
W	Kaiserebersdorf	31
W	Kendlerstr.	31
W	Rinnböckstr.	45
W	Stephansplatz	31
W	Taborstr.	43
W	Währinger Gürtel	32

Den höchsten Jahresmittelwert wies somit Vomp A12 an der Inntalautobahn mit 61 μg/m³ auf, gefolgt von Wien Hietzinger Kai, Salzburg Rudolfsplatz, Feldkirch, Hallein Hagerkreuzung, Wien Rinnböckstraße und Graz Don Bosco.

Hohe NO₂-Jahresmittelwerte zeichnen somit nicht nur städtische verkehrsnahe Standorte, sondern auch ländliche autobahnnahe Messstellen wie Vomp A12, Gärberbach (Brennerautobahn), Zederhaus (A10) und Vösendorf (A2) aus, darüber hinaus zahlreiche inneralpine Klein- und Mittelstädte.

Der Zielwert des IG-L zum Schutz der menschlichen Gesundheit von $80 \,\mu g/m^3$ als TMW - der gleiche Wert ist auch Zielwert zum Schutz der Vegetation - wurde im Jahr 2002 an den in Tabelle 21 angeführten Messstellen überschritten (städtische Messstellen sind kursiv dargestellt).

Tabelle 21: Überschreitungen des Zielwerts für NO₂ von 80 μg/m³ als Tagesmittelwert 2002 (städtische Messstellen kursiv).

Bundesland	Messstelle	Max. TMW (μg/m³)	TMW > 80 μg/m ³
K	Klagenfurt Koschatstr.	88	6
K	Klagenfurt Völkermarkterstr.	96	8
N	St. Valentin	83	2
BG Linz	Linz Kleinmünchen	81	1
BG Linz	Linz Neue Welt	83	1
BG Linz	Linz ORF-Zentrum	81	1
BG Linz	Linz Römerberg	91	2
BG Linz	Linz Urfahr	87	2
S	Hallein Hagerkreuzung	135	13
S	Salzburg Lehen	139	9

Bundesland	Messstelle	Max. TMW (μg/m³)	TMW > 80 μg/m ³
S	Salzburg Mirabellplatz	138	10
S	Salzburg Rudolfsplatz	111	19
S	Zederhaus	89	5
BG Graz	Graz Don Bosco	108	16
BG Graz	Graz Mitte	101	7
BG Graz	Graz Süd	116	11
T	Hall i.T.	98	10
T	Imst	87	2
T	Innsbruck Reichenau	93	7
T	Innsbruck Zentrum	96	6
T	Kufstein	88	3
Т	Vomp A12	113	32
Т	Vomp – a.d.L.	101	8
V	Bludenz	92	2
V	Dornbirn	116	8
V	Feldkirch	114	4
V	Lustenau	109	3
W	Belgradplatz	85	1
W	Gaudenzdorf	83	2
W	Hietzinger Kai	120	50
W	Rinnböckstraße	86	2
W	Taborstraße	91	5

Die meisten Überschreitungen des Zielwertes zum Schutz des Menschen traten in Wien Hietzinger Kai, Vomp A12, Salzburg Rudolfsplatz und Graz Don Bosco auf.

Der Grenzwert zum Schutz der Ökosysteme und der Vegetation von 30 μ g/m³ als JMW für NO_X, wobei die Summe von NO und NO₂ in Volumensanteilen zu bilden und NO_X als NO₂ in μ g/m³ zu berechnen ist, wurde 2002 u.a. an den ländlichen industrienahen Messstellen Wietersdorf, Judendorf, Peggau und Straßengel und an den ländlichen verkehrsnahen Messstellen Vösendorf, Zederhaus, Wald a.A., Gärberbach und Vomp A12 (mit 340 μ g/m³ der höchste NO_X-JMW) überschritten; eher relevant für den Schutz der Vegetation sind Überschreitungen an der ländlichen verkehrsfernen Messstelle St. Valentin (35 μ g/m³) und in Kramsach (49 μ g/m³) in der Nähe der Inntalautobahn (A12) – wenngleich diese Messstellen nicht auf gesetzlicher Basis zum Schutz der Vegetation betrieben wurden.

An den auf gesetzlicher Basis zum Schutz der Vegetation betriebenen Messstellen wurde der NO_X -Grenzwert eingehalten.

Trend

Die NO₂-Belastung zeigt von den späten Achtzigerjahren bis Mitte der Neunzigerjahren einen uneinheitlichen leicht abnehmenden Trend; v.a. an einzelnen hoch belasteten städtischen verkehrsnahen Standorten konnte eine deutliche Abnahme der NO₂-Belastung erzielt werden, wie Abbildung 8 zeigt. In den letzten Jahren ist an den meisten Belastungsschwerpunkten kein deutlicher Trend mehr zu erkennen, in vielen Fällen sogar eine leichte Zunahme. Eine vergleichbare Charakteristik zeigt auch der Hintergrundstandort Pillersdorf, wenn auch auf deutlich geringerem Niveau.

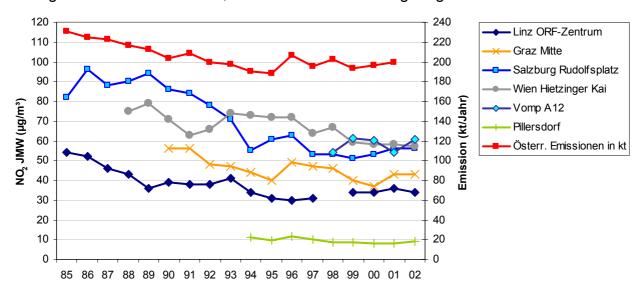


Abbildung 8: Jahresmittelwerte der NO₂-Konzentration an ausgewählten hoch belasteten Messstellen und am Hintergrundstandort Pillersdorf (μg/m³) sowie jährliche NO_X-Emissionen Österreichs (kt/Jahr)²⁰.

In Tabelle 22 und Abbildung 9 sind Mittelwert, Maximum, Minimum und 95-Perzentil der JMW der österreichischen NO_2 -Messstellen über den Zeitraum 1993 bis 2002 zusammengestellt. Die Auswertung umfasst jene 94 Messstellen, in deren Messreihe 1993-2002 höchstens ein Jahr fehlt. Den maximalen JMW von diesen Messstellen registrierte jeweils Wien Hietzinger Kai. Höhere JMW wurden 1999, 2000 und 2002 an der (1997 in Betrieb genommenen, daher in Tabelle 22 nicht berücksichtigten) Messstelle Vomp A12 beobachtet.

Tabelle 22: Mittelwert, Maximum, Minimum und 95-Perzentil der JMW der österreichischen NO₂-Messstellen (μg/m³), 1993 bis 2002

	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Mittel	29	26	26	27	25	26	25	24	24	25
Max	74	73	72	72	64	67	59	58	58	57
Min	6	5	4	5	4	4	5	4	2	2
P95	47	45	42	46	44	42	42	42	41	43

²⁰ Anmerkung: Aufgrund neuer Emissionsberechnungen wurden die NO_X-Emissionen gegenüber dem letzten Jahresbericht leicht nach oben revidiert

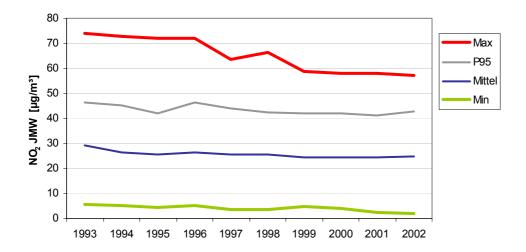


Abbildung 9 Mittelwert, Maximum, Minimum und 95-Perzentil der JMW der österreichischen NO₂-Messstellen (μg/m³), 1993 bis 2002

Wie aus Tabelle 22 ersichtlich, nahm die NO_2 -Belastung im Mittel über die 94 durchgehend betriebenen Messstellen zwischen 1993 und 2002 um 14% ab (während die NO_X -Emission Österreichs 1993 - 2001 um 1% stieg). Seit 1997 ist im Mittel praktisch keine Veränderung der NO_2 -Belastung zu erkennen, bei den höchst belasteten Standorten seit 1999.

Seit 1997/1998 wiesen u.a. Wien Hietzinger Kai, Wien Gaudenzdorf, Graz Mitte und Graz Süd weiterhin eine Abnahme der NO₂-Belastung auf, während u.a. in Salzburg Rudolfsplatz, Salzburg Lehen, Hallein Hagerkreuzung, Wien Rinnböckstraße, Wien Floridsdorf, Linz ORF-Zentrum und Linz Urfahr die NO₂-Belastung um 10 bis 15% anstieg. Auch im Bereich der Inntalautobahn stieg die NO₂-Konzentration an, in Hall i.T. seit 1997 um 11%, in Vomp A12 seit 1998 um 13%, bei allerdings starken Variationen von Jahr zu Jahr.

Die NO₂-Hintergrundbelastung liegt im außeralpinen ländlichen Raum bei 9 bis 11 μg/m³, im Mittelgebirge abseits der großen Täler bei 3 bis 4 μg/m³ im Jahresmittel.

Ein wesentlicher Faktor für den Rückgang der mittleren NO_2 -Belastung zwischen 1993 und 1998 bei praktisch konstanten NO_X -Emissionen dürften die meteorologischen Verhältnisse, d.h. die winterlichen Ausbreitungsbedingungen darstellen, da zwischen 1997/98 und 2001/02 die Winter vergleichsweise mild waren und lang anhaltende Inversionslagen seltener auftraten als in den Jahren davor.

Neben den NO_X-Emissionen wird die NO₂-Belastung auch vom Ausmaß der Oxidation von NO zu NO₂ beeinflusst.

4.3 Schwefeldioxid

Der Grenzwert des IG-L – 200 μ g/m³ als HMW, wobei bis zu 3 HMW bis 350 μ g/m³ nicht als Überschreitung gelten – wurde im Jahr 2002 an den Messstellen St. Pölten, Arnfels, Köflach und Straßengel überschritten (siehe Tabelle 23; Abbildung 10 zeigt die maximalen HMW aller österreichischen Messstellen); alle diese Messstellen wurden gemäß IG-L betrieben.

Der Tagesmittelwert von 120 μg/m³ wurde an keiner Messstelle überschritten.

Gebiet	Messstelle	Tage mit Grenzwertüberschreitung	max. HMW (µg/m³)				
N	St. Pölten	4.4.	312				
St	Arnfels	12.2., 13.2.	433				
St	Köflach	1.7.	450				
St	Straßengel	9.7.	362				

Tabelle 23: Überschreitungen des IG-L-Grenzwertes für SO₂, 2002

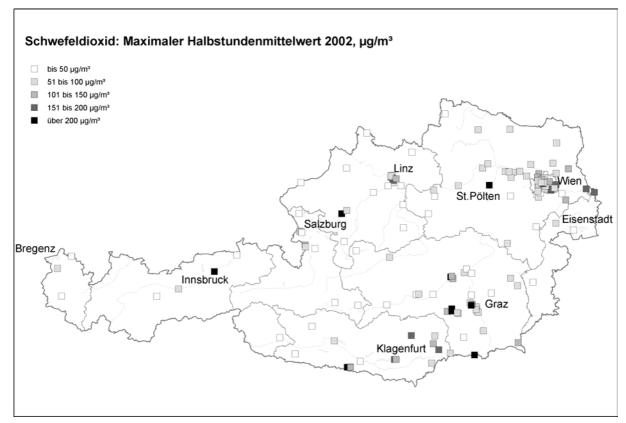


Abbildung 10: Maximale Halbstundenmittelwerte SO₂

Die Ursache der Grenzwertüberschreitungen in St. Pölten waren lokale industrielle Emissionen. In Köflach waren erhöhte SO_2 -Emissionen beim Hochfahren des Blocks ÖDK III des Kraftwerks Voitsberg für die Grenzwertverletzung verantwortlich, in Straßengel ein Störfall der Zellstofffabrik SAPPI 21 . In Arnfels war – wie in den vergangenen Jahren – SO_2 -Transport aus dem kalorischen Kraftwerk Sostanj in Slowenien verantwortlich.

HMW über 200 μ g/m³ - allerdings ohne das Kriterium einer Grenzwertverletzung zu erfüllen – traten, außer an den in Tabelle 23 genannten Stationen, in Arnoldstein Hohenthurn, Lenzing, Leoben Donawitz, Piber und Brixlegg auf.

Eine Belastung von mehr als 80% des Grenzwertes (d.h. über 160 μ g/m³ als HMW) – die gemäß IG-L einen Weiterbetrieb der Messstelle im Folgejahr erfordert – wurde zudem in Kittsee, St. Georgen, Hainburg, Linz Neue Welt, Linz ORF-Zentrum, Wien Kaiserebersdorf und Wien Stephansplatz registriert.

-

²¹Statuserhebungen der steiermärkischen Messstellen, Pongratz (2003)

Der höchste Tagesmittelwert wurde im Jahr 2002 mit 89 μg/m³ in Straßengel gemessen, gefolgt von Hainburg und Arnfels.

Verantwortlich für die erhöhte SO₂-Belastung war im Nordburgenland und im östlichen Niederösterreich (Kittsee, Hainburg) Schadstofftransport aus dem Ballungsraum Bratislava, in der Südsteiermark (Arnfels) und Südostkärnten (St. Georgen) SO₂-Transport aus Slowenien. Industrielle Emissionen dürften u.a. in Arnoldstein, St. Pölten, Lenzing, Linz, im Raum Köflach - Voitsberg, in Leoben, Straßengel, Brixlegg und Wien Kaiserebersdorf verantwortlich für die hohen Spitzenwerte gewesen sein.

Der als Jahresmittelwert definierte Grenzwert zum Schutz der Ökosysteme von $20~\mu g/m^3$ wurde 2002 an keiner Messstelle in Österreich überschritten. Der höchste JMW trat mit $19~\mu g/m^3$ in Straßengel auf, gefolgt von St. Pölten, Schwechat und Graz Don Bosco mit JMW über $10~\mu g/m^3$.

Der als Wintermittelwert definierte Grenzwert zum Schutz der Ökosysteme von $20~\mu g/m^3$ wurde 2002 in Straßengel ($22~\mu g/m^3$) überschritten, diese industrienahe Messstelle ist aber nur beschränkt relevant für den Schutz von Ökosystemen. Wintermittelwerte über $10~\mu g/m^3$ traten auch in Arnoldstein Hohenthurn, Klagenfurt Völkermarkterstr., Gänserndorf, Hainburg, Mannswörth, Graz Don Bosco, Judendorf, Köflach und Innsbruck Zentrum auf.

Insgesamt war die SO_2 -Belastung im Jahr 2002 damit etwas höher als 1999, 2000 und 2001. 1999 wurde der IG-L-Grenzwert nur in Arnfels und St. Georgen, 2000 in Arnfels überschritten (in diesen Jahren noch nicht als IG-L-Messstelle betrieben), 2001 in Stixneusiedl (allerdings nicht formal als Grenzwertverletzung gezählt, da die Überschreitung vor Inkrafttreten der neuen Grenzwerte der IG-L-Novelle am 7.7. auftrat).

Trend

Die SO₂-Belastung zeigt in Österreich bis 1998 einen unregelmäßigen und regional unterschiedlichen deutlich rückläufigen Trend. Ausschlaggebend für diese Entwicklung war zunächst die deutliche Reduktion der SO₂-Emissionen in Österreich seit Mitte der Achtzigerjahre, in den Neunzigerjahren die beginnende Emissionsminderung in den nördlichen und östlichen Nachbarstaaten Österreichs, die im östlichen Deutschland und in Tschechien am stärksten ausfiel. Dabei wirkten sich Maßnahmen bei einzelnen Industriestandorten in Österreich unterschiedlich aus, in Linz etwa konnte bereits in den späten Achtzigerjahren eine starke Reduktion der SO₂-Belastung erzielt werden.

Ein weiterer wesentlicher Faktor für den seit 1996 zu beobachtenden starken Rückgang der SO₂-Belastung und vor allem des SO₂-Ferntransports aus den nördlichen und östlichen Nachbarländern war das Ausbleiben von länger anhaltenden winterlichen Hochdruckwetterlagen mit Transport sehr kalter, stabil geschichteter Luftmassen aus Osteuropa nach Österreich. Derartige meteorologische Bedingungen waren zuletzt im Winter 1996/97 für starke Schadstoffanreicherung in Bodennähe und Schadstoffverfrachtung von Osten nach Österreich verantwortlich; betroffen von derartigem großflächigem Schadstoffferntransport – mit verbreiteten Grenzwertverletzungen zuletzt im Jänner 1997 – war vor allem der Nordosten Österreichs. Demgegenüber waren die Winter seit 1997/98 von vergleichsweise milder Witterung gekennzeichnet. Ungünstige Witterungsbedingungen führten im Winter 2002/03 wieder zu vergleichsweise höheren SO₂-Belastungen.

Abbildung 11 zeigt statistische Parameter der JMW aller österreichischen Messstellen für die Jahre 1993 bis 2002, wobei nur jene 98 Messstellen berücksichtigt

wurden, von denen in zumindest 9 Jahren JMW vorliegen. Der höchste JMW wurde 1993 noch in Gänserndorf registriert, 1995 und ab 1998 war Straßengel jeweils die höchst belastete Messstelle.

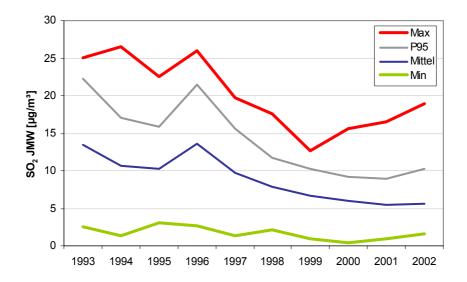


Abbildung 11: Mittelwert, Maximum, Minimum und 95-Perzentil der JMW von SO₂ (in μg/m³) aller österreichischer Messstellen in den Jahren 1993 bis 2002.

Es zeigt sich, dass die SO_2 -Belastung im Verlauf der letzten 10 Jahre im Mittel über diese 98 Messstellen um 64% abnahm. So ging in Linz Neue Welt der JMW von 10 auf 4 μ g/m³ zurück, in Salzburg Rudolfsplatz von 15 auf 6 μ g/m³, in Graz Süd von 16 auf 7 μ g/m³, in Wien Stephansplatz von 17 auf 5 μ g/m³.

In Hainburg, der am stärksten von SO_2 -Transport aus dem Raum Bratislava betroffenen Messstelle, nahm der JMW seit 1993 von 24 auf 10 μ g/m³ ab. Besonders starke Abnahmen der mittleren SO_2 -Belastung verzeichneten ländliche Messstellen sowohl im Nordosten wie im Südosten Österreichs, an denen SO_2 -(Fern-)Transport aus dem Ausland eine dominierende Rolle spielt; in Arnfels in der Südsteiermark ging der JMW seit 1993 von 21 auf 6 μ g/m³, in Pillersdorf im nördlichen Niederösterreich von 19 auf 3 μ g/m³ zurück. Im nördlichen Niederösterreich wirkten sich die Reduktionen der SO_2 -Emissionen in Ostdeutschland und in Tschechien von über 80% positiv aus; in der Südsteiermark und in Südostkärnten war die schrittweise Inbetriebnahme der Entschwefelungsanlagen am Kraftwerk Sostanj 1995 und 2001 deutlich zu beobachten, wenngleich die SO_2 -Emissionen dieses Kraftwerkes in Arnfels nach wie vor zu Grenzwertverletzungen beitragen können.

Im Nahbereich einzelner Industriebetriebe zeigt die SO_2 -Belastung eine differenzierte Entwicklung. In Linz, Lenzing und Hallein nahm die mittlere SO_2 -Belastung in den letzten 10 Jahren ca. auf die Hälfte ab, in Leoben Donawitz von 12 auf 5 μ g/m³, während etwa in Arnoldstein und Straßengel eine nur geringfügige Abnahme (in Straßengel von 23 auf 19 μ g/m³ als JMW) zu verzeichnen war.

Abbildung 12 zeigt den Verlauf der JMW der SO₂-Belastung an den hoch belasteten Messstellen Wien Stephansplatz (Großstadt, Zentrum), Linz ORF-Zentrum (Stadt, industrienah), Hainburg (grenzüberschreitender Schadstofftransport aus der Slowakei) und Hallein (industrienah) für die Jahre 1985 bis 2002 sowie die jährlichen österreichischen SO₂-Emissionen (in 1000 t).

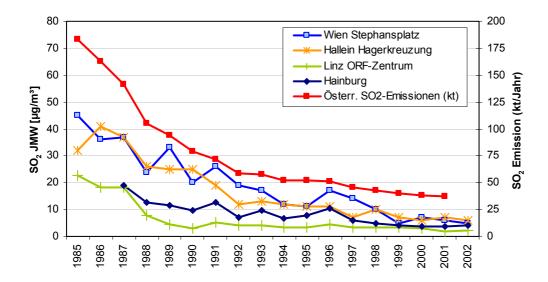


Abbildung 12: Jahresmittelwert (in μg/m³) ausgewählter hoch belasteter Messstellen und SO₂-Emission Österreichs (in kt/Jahr), 1985 bis 2002, Emissionen bis 2001²².

4.4 Kohlenstoffmonoxid

Die CO-Konzentration überschritt in Österreich 2002 an keiner Messstelle den im IG-L Anlage 1 festgelegten Grenzwert von 10 mg/m³ als Achtstundenmittelwert. Der höchste MW8 wurde mit 6,2 mg/m³ in Salzburg Mirabellplatz registriert.

Schwerpunkte der CO-Belastung (mit maximalen MW8 zwischen 4 und 6 mg/m³) waren neben dem industrienahen Standort Leoben Donawitz verkehrsnahe Standorte v.a. in größeren Städten, so in Graz, Salzburg, Innsbruck, Klagenfurt, Villach und Lienz; vergleichsweise niedrig war die CO-Belastung in Wien und Linz mit maximalen MW8 unter 3,5 mg/m³ sowie an ländlichen Standorten an Autobahnen mit maximal 2,0 mg/m³ (Abbildung 13).

Umweltbundesamt/Federal Environment Agency - Austria

 $^{^{22}}$ aufgrund der Neuberechnung der SO₂-Emissionen sind die hier angegebenen Emissionsdaten etwas niedriger als die im Jahresbericht 2001 publizierten Werte.

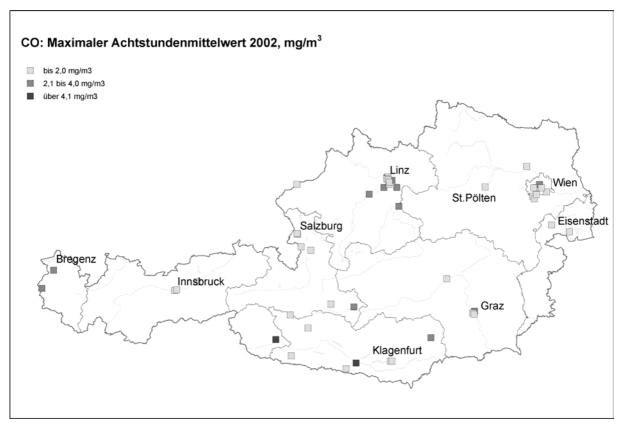


Abbildung 13: Maximaler Achtstundenmittelwert CO, 2002

Im Jahresmittel wies Salzburg Rudolfsplatz mit 0,9 mg/m³ die höchste CO-Belastung auf, gefolgt von Graz Don Bosco, Leoben Donawitz, Lienz und Wien Hietzinger Kai. Die CO-Hintergrundkonzentration liegt im außeralpinen Raum bei 0,3 mg/m³ als

Die CO-Hintergrundkonzentration liegt im außeralpinen Raum bei 0,3 mg/m³ als JMW, im Alpenraum bei 0,2 mg/m³; die maximalen MW8 lagen an den Hintergrundmessstellen unter 1 mg/m³.

Trend

Die CO-Belastung weist in den letzten Jahren an fast allen Messstellen einen abnehmenden Trend auf. Konzentrationen über dem seit 1997 gültigen Grenzwert (MW8 über 10 mg/m³) traten zuletzt 1993 in Graz und Innsbruck und 1996 und 1997 in Leoben Donawitz auf (wo die spezifische Entwicklung der lokalen industriellen Emissionen in diesen Jahren einen starken Anstieg der CO-Belastung verursachte, die mittlerweile aber auf ein Niveau vergleichbar den frühen Neunzigerjahren zurückgegangen ist). Der Rückgang der CO-Konzentration korrespondiert mit der kontinuierlichen Reduktion der österreichischen CO-Emissionen (siehe Abbildung 14). Besonders ausgeprägt ist der Rückgang an verkehrsnahen städtischen Messstellen, an denen in den letzten 10 Jahren eine Abnahme auf etwa die Hälfte erfolgt ist.

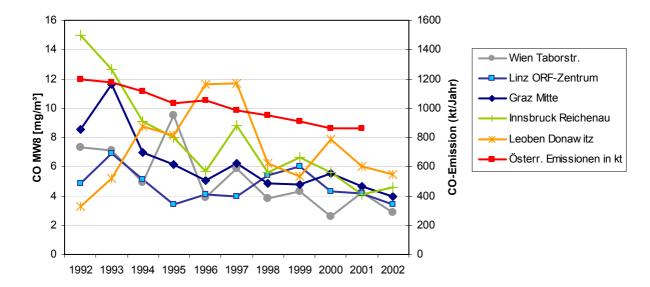


Abbildung 14: Maximale Achtstundenmittelwerte der CO-Konzentration in den Jahren 1993 bis 2001 (mg/m³) und jährliche CO-Emission Österreichs (kt/Jahr)²³

Abbildung 15 gibt für die Jahre 1992 bis 2002 den Mittelwert, den maximalen und den minimalen JMW sowie das 95-Perzentil der JMW (für jene 25 Messstellen an, die in diesem Zeitraum durchgehend in Betrieb waren) und zeigt, dass die Jahresmittelwerte im Mittel über alle Stationen in diesen 11 Jahren um 45% zurückgegangen sind, der höchste Jahresmittelwert (in allen Jahren an der Station Salzburg Rudolfsplatz) um 64%.

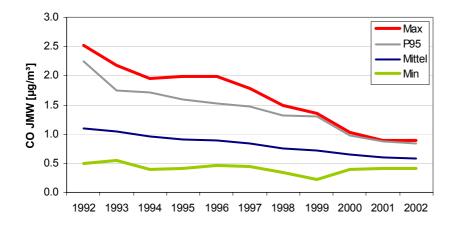


Abbildung 15: Mittelwert, maximaler und minimaler JMW sowie 95-Perzentil der JMW der CO-Konzentration, 1992 bis 2002, mg/m³

Umweltbundesamt/Federal Environment Agency – Austria

²³ Anmerkung: Aufgrund neuer Emissionsberechnungen wurden die CO-Emissionen gegenüber dem letzten Jahresbericht leicht nach unten revidiert

4.5 Blei im Schwebestaub

Die Konzentration von Blei im Schwebestaub wurde 2002 an 13 Messstellen erfasst, welche gemäß IG-L betrieben wurden, sowie an einer weiteren Messstelle; an 12 Messstellen wurde Blei in der PM10-Fraktion erfasst, an zwei Messstellen im Gesamtschwebestaub (Messung mit FH62I-N). Die Verfügbarkeit lag an allen Messstellen bei mindestens 90%.

Tabelle 24 gibt für diese Messstellen die Staubfraktion, das Probenahmeintervall, die Verfügbarkeit und den Jahresmittelwert an. Die Bleikonzentration lag an allen Messstellen unter dem im IG-L festgelegten Grenzwert von 0,5 µg/m³ als Jahresmittelwert.

Tabelle 24: Blei im Schwebestaub: Angabe der Staubfraktion, des Probenahmeintervalls, der Verfügbarkeit und des Jahresmittelwertes, 2002.

Alle Messstellen außer Hallein wurden gemäß IG-L betrieben.
In Wien Gaudenzdorf und Rinnböckstr. wird Blei im TSP erfasst, an allen anderen Messstellen im PM10.

BL	Station	Probenahme	Verfüg- barkeit	JMW (μg/m³)
В	Illmitz	jeder 6. Tag	100	0,02
K	Arnoldstein Kugi	jeder 2. Tag	100	0,08
K	Klagenfurt Völkermark- terstr.	jeder 6. Tag	97	0,02
K	Vorhegg	jeder 6. Tag	90	0,01
0	Linz Neue Welt	Täglich, Analyse über Mischprobe von 28 Filtern	100	0,02
0	Linz ORF-Zentrum	Täglich, Analyse über Mischprobe von 28 Filtern	100	0,02
0	Steyregg	Täglich, Analyse über Mischprobe von 28 Filtern	100	0,02
S	Hallein Hagerkreuzung	jeden 5.Tag	100	0,01
S	Salzburg Rudolfsplatz	jeden 5.Tag	100	0,01
S	St. Koloman	jeder 6. Tag	100	<0,01
T	Brixlegg	Täglich, Analyse über Mischprobe von 28 Filtern	100	0,30
V	Dornbirn Stadtstr.	jeden 6. Tag	100	<0,05
W	Gaudenzdorf	jeder 8. Tag	97	0,03
W	Rinnböckstr.	jeder 8. Tag	95	0,02

Den höchsten JMW registrierte die industrienahe Messstelle Brixlegg mit 0,30 µg/m³, gefolgt von Arnoldstein mit 0,08 µg/m³ und Wien Gaudenzdorf mit 0,03 µg/m³.

Abseits einzelner industrieller Quellen liegt auch in größeren Städten die Bleikonzentration mit 0,01 bis 0,03 μ g/m³ in ähnlicher Höhe wie Hintergrundkonzentration (Illmitz 0,02 μ g/m³, Vorhegg 0,01 μ g/m³), d.h. die Bleiemissionen spielen auch in Städten keine nennenswerte Rolle mehr.

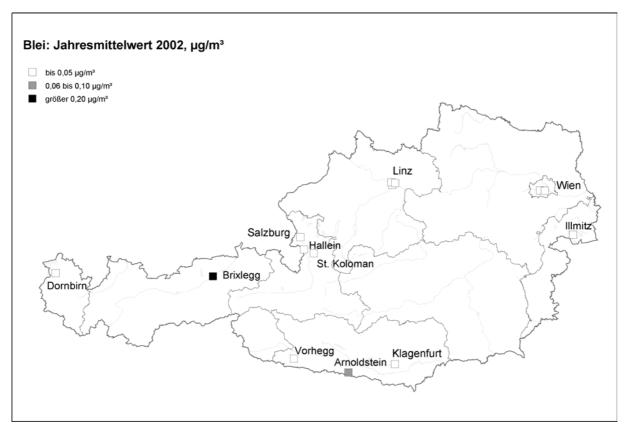


Abbildung 16: Blei im Schwebestaub, 2002.

Trend

Blei-Messreihen liegen erst seit 1999 von denen Messstellen Brixlegg, Arnoldstein und Salzburg Rudolfsplatz vor, in größerem Umfang wurde die Bleimessung 2002 begonnen. Brixlegg und Arnoldstein zeigen seit 1999 eine deutliche Abnahme der Bleibelastung – primär bedingt durch die Reduktion der lokalen Bleiemissionen – , an den anderen Messstellen ist praktisch kein Trend zu beobachten.

Die Blei-Emissionen Österreichs nahmen in den frühen Neunzigerjahren deutlich ab, was u.a. auf das Verbot von Bleizusatz in Kfz-Treibstoffen zurückzuführen ist, und liegen seit 1995 stabil auf einem niedrigen Niveau um 15 t/Jahr.

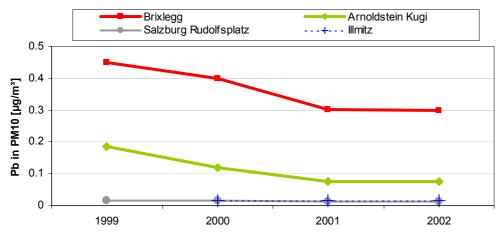


Abbildung 17: Trend der Blei-Jahresmittelwerte, 1999 – 2002

4.6 Benzol

Im Jahr 2002 wurden in Österreich 16 Benzol-Messstellen gemäß IG-L betrieben. Weiters umfasst dieser Bericht Benzol-Daten von 3 weiteren Messstellen, die nicht gemäß IG-L in Betrieb waren.

Zur Anwendung kommen unterschiedliche Messverfahren:

- Passive Probenahme auf Adsorptionsröhrchen über einen Zeitraum von 2 bis
 7 Wochen (längere Probenahme bei niedrigem Konzentrationsniveau) und anschließender Analyse mittels Gaschromatograph (GC) im Labor
- Aktive Probenahme, d.h. Besaugung von Adsorptionsröhrchen über jeweils einen Kalendertag, wobei i.d.R. nicht jeden Tag eine Probe genommen wird. Die Analyse erfolgt mittels GC im Labor.
- kontinuierliche Messung in der Messstelle mittels GC

In Tabelle 25 sind Messziel, Messmethode, Verfügbarkeit und Jahresmittelwert zusammengefasst.

Tabelle 25: Benzol: Messung gemäß IG-L zum Schutz der menschlichen Gesundheit ("IG-L"), Messmethode, Verfügbarkeit, Jahresmittelwert 2002

Gebiet	Station	IG-L	Methode	Verfügbarkeit (%)	JMW (µg/m³)
В	Illmitz	ja	passiv (4 bis 7 W)	100	1,3
K	Klagenfurt Völkermark- terstr.	ja	GC	89	3,4
K	Vorhegg	ja	passiv (4 bis 7 W)	100	0,6
N	Vösendorf	ja	GC	54	
0	Linz Bernaschekplatz		passiv (2 bis 3 W)	100	3,1
0	Linz Kleinmünchen	ja	passiv (2 bis 3 W)	100	1,4
0	Linz Neue Welt	ja	passiv (2 bis 3 W)	100	1,7
0	Linz Tankhafen		passiv (2 bis 3 W)	100	1,5
0	Linz Urfahr		passiv (2 bis 3 W)	100	2,0
0	Steyregg	ja	passiv (2 bis 3 W)	100	1,4
S	Salzburg Rudolfsplatz	ja	GC	90	4,1
S	St. Koloman	ja	passiv (4 bis 7 W)	100	0,7
St	Graz Don Bosco	ja	GC	82	2,6
St	Graz Mitte	ja	GC	84	1,8
Т	Innsbruck Zentrum	ja	aktiv (jeden 3. Tag)	100	3,0
V	Bregenz Montfortstr.	ja	passiv (2 W)	100	3,3
V	Feldkirch Bärenkreuzung	ja	passiv (2 W)	100	2,9
W	Hietzinger Kai	ja	aktiv (jeden 8. Tag)	98	3,3
W	Rinnböckstr.	ja	aktiv (jeden 8. Tag)	94	2,3

Der Grenzwert des IG-L von 5 μ g/m³ als JMW wurde im Jahr 2002 an allen Messstellen Österreichs eingehalten. Der höchste JMW wurde mit 4,1 μ g/m³ an der Messstelle Salzburg Rudolfsplatz registriert, gefolgt von Klagenfurt Völkermarkterst-

raße (3,4 μg/m³), Bregenz, Wien Hietzinger Kai, Linz Bernaschekplatz und Innsbruck Zentrum (Abbildung 18).

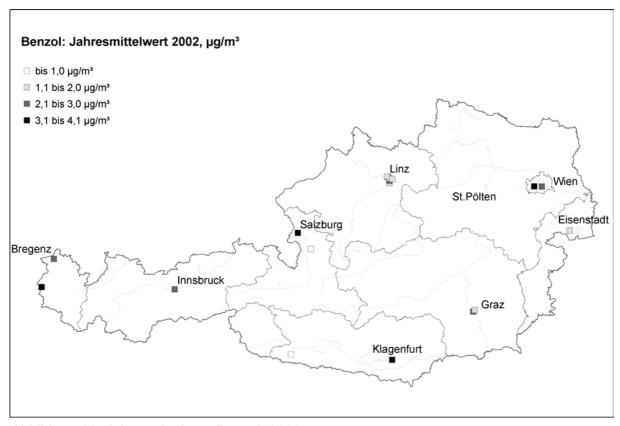


Abbildung 18: Jahresmittelwert Benzol, 2002.

Die Belastungsschwerpunkte stellen, soweit eine entsprechende Aussage anhand der verfügbaren Messstellen möglich ist, verkehrsnahe Standorte dar, an denen die Konzentration im Jahresmittel 2,0 μ g/m³ übersteigt. Messstellen im städtischen Hintergrund registrieren JMW um 1,5 μ g/m³, welche damit in der gleichen Größenordnung wie im ländlichen außeralpinen Hintergrund (Illmitz, 1,3 μ g/m³) liegen. An den alpinen Hintergrundstandorten St. Koloman und Vorhegg liegt die Konzentration bei 0,6 bzw. 0,7 μ g/m³ als JMW.

Trend

Aussagen über die Entwicklung der Benzol-Belastung sind noch nicht möglich, da erst 2000 an einer größeren Anzahl von Messstellen mit der Erfassung von Benzol begonnen wurde. Einen deutlichen Rückgang zeigt die Benzolkonzentration in Salzburg Rudolfsplatz (siehe Abbildung 19). Die Messstellen in Linz sowie die Hintergrundstandorte weisen in den letzten Jahren keine signifikante Veränderung auf.

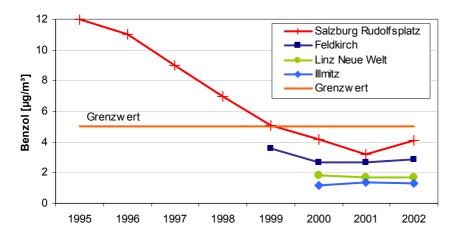


Abbildung 19: Trend der Jahresmittelwerte Benzol in Salzburg Rudolfsplatz, Feldkirch, Linz Neue Welt und Illmitz

4.7 Ozon

Der Grenzwert der **Vorwarnstufe** laut Ozongesetz (200 μ g/m³ als MW3) wurde am 31.8.2002 in Schwechat (201 μ g/m³) überschritten. Da zeitgleich an keiner anderen Messstelle im gleichen Ozonüberwachungsgebiet der Grenzwert überschritten wurde, wurde die Vorwarnstufe ebenso wie die **Warnstufe** im Jahr 2002 nicht ausgerufen.

Der Zielwert zum Schutz der menschlichen Gesundheit laut IG-L von 110 µg/m³ als MW8a oder MW8b (ident mit dem Schwellenwert der EU-RL 92/72/EWG) wurde im Jahr 2002 an allen Messstellen in Österreich überschritten (Abbildung 20). Die meisten Überschreitungen traten, wie schon in den früheren Jahren, in höheren und exponierten Lagen auf. Unter den städtischen Messstellen wiesen die am Stadtrand gelegenen, emittentenfernen Stationen in der Regel mehr Überschreitungen auf als verkehrsnahe Messstellen im Stadtzentrum. Die niedrigsten Belastungen wurden in inneralpinen Tälern registriert, wo der ausgeprägte Tagesgang zu vergleichsweise geringeren nachmittäglichen Achtstundenmittelwerten beiträgt, sowie an verkehrsnahen Standorten in größeren Städten infolge stärkeren Ozonabbaus durch lokale NO-Emissionen. Die geringste Anzahl an Überschreitungen wurde in Tulln und Wolfsberg beobachtet.

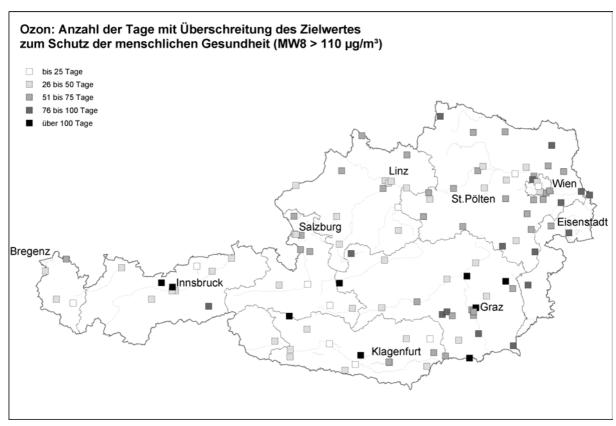


Abbildung 20: Anzahl der Tage mit Überschreitungen des Zielwertes für Ozon zum Schutz der menschlichen Gesundheit, 2002.

Der **Schwellenwert zur Unterrichtung der Bevölkerung** gemäß EU-RL 92/72/EWG von 180 µg/m³ als Einstundenmittelwert²⁴ (Tabelle 26) wurde im Jahr 2002 an 14 Tagen an insgesamt 26 Messstellen überschritten. Die meisten Überschreitungen registrierte Schwechat (4 Tage), gefolgt von Wien Hermannskogel (3 Tage) und Klosterneuburg, Wien Hohe Warte und Lustenau mit je zwei Tagen.

Umweltbundesamt/Federal Environment Agency – Austria

²⁴ entspricht dem Informationsschwellenwert der RL 2002/3/EG und dem Ozongesetz idgF. 2003

Tabelle 26: Überschreitungen des Schwellenwertes zur Unterrichtung der Bevölkerung gemäß EU-RL 92/72/EWG (180 µg/m³ als Einstundenmittelwert), 2002

Datum	Messstelle
31.3.	Schwechat
17.5.	Gaisberg, Haunsberg Masenberg, Voitsberg
18.5.	Traun Bockberg
19.6.	Heidenreichstein, Irnfritz, Pillersdorf Hallein Winterstall Kufstein Bludenz, Lustenau
20.6.	Sulzberg
23.6.	Klosterneuburg, Schwechat Wien Hohe Warte, Wien Hermannskogel Vorhegg
27.6.	Lustenau
2.7.	Bad Vöslau, Himberg, Wien Hermannskogel
11.7.	Gerlitzen
21.7.	Klosterneuburg, Wolkersdorf Wien Hohe Warte
30.7.	Illmitz
9.8.	Mödling
19.8.	Dunkelsteinerwald
31.8.	Schwechat Wien Laaerberg, Wien Lobau, Wien Hermannskogel

Schwerpunkt der Belastung bei den Kurzzeitspitzenwerten war somit, wie in allen vergangenen Jahren, der Nordosten Österreichs, wo verstärkte Ozonbildung in der Abgasfahne Wiens für die regional erhöhte Belastung verantwortlich war.

Der Schwellenwert zum Schutz der Vegetation der EU-RL 92/72/EWG – 65 µg/m³ als Tagesmittelwert – wurde in ganz Österreich in teilweise sehr erheblichem Ausmaß überschritten, wobei die höchsten Belastungen, wie in den letzten Jahren, im Hoch- und Mittelgebirge beobachtet wurden. Die meisten Überschreitungen registrierte die Messstelle Sonnblick (an allen Tagen), Überschreitungen während mehr als 90% des Jahres wurden an Messstellen im Bereich der Waldgrenze registriert. Überschreitungen an bis zu 80% aller Tage wiesen Messstellen in Mittelgebirgslage auf. Im Flachland war der Nordosten mit bis zu 55% Überschreitungshäufigkeit am stärksten belastet. Die geringste Belastung wurde in inneralpinen Tälern beobachtet.

Im Rahmen der UNECE wurden "Critical Levels" für Ozon zum Schutz von Pflanzen ausgearbeitet, welche die Ozonbelastung als AOT40-Wert²⁵ bewerten. Zur Berechnung des AOT40 wird die Summe der Differenz der Ozonkonzentration (MW1) über 40 ppb (80 µg/m³) während eines bestimmten Zeitraums gebildet. Unterschiedliche Referenzzeiträume (jeweils über Tageslichtstunden) werden für die

_

²⁵ AOT40: Accumulated exposure Over Threshold of 40 ppb

Bewertung der Ozonbelastung für Wald einerseits, für landwirtschaftliche Pflanzen, Weiden und natürliche Vegetation andererseits herangezogen. In Tabelle 27 sind die jeweiligen Berechnungszeiträume und die Critical Levels angeführt.

Tabelle 27: Definition der AOT40-Werte

	Zeitfenster	Critical Level
UNECE, Schutz des Waldes	April – September, Tageslichtstunden	10 ppm.h
UNECE, Schutz landwirtschaftlicher Pflanzen	Mai – Juli, Tageslichtstunden	3 ppm.h
RL 2002/3/EG, Zielwert zum Schutz der Vegetation	Mai – Juli, 8:00 – 20:00	9 ppm.h (=18.000 μg/m³.h), gemittelt über 5 Jahre
RL 2002/3/EG, langfristiges Ziel zum Schutz der Vegetation	Mai – Juli, 8:00 – 20:00	3 ppm.h (=6.000 μg/m³.h)

In der neuen Ozon-RL der EU (2002/3/EG) wurde das Konzept des AOT40 als Zielwert für den Schutz der Vegetation übernommen, wobei der – strengere – AOT40-Wert für den Schutz landwirtschaftlicher Pflanzen herangezogen wurde, der Berechnungszeitraum aber von "Tageslichtstunden" auf das europaweit einheitliche Zeitfenster von 8:00 bis 20:00 MEZ leicht verändert wurde (bei der Berechnung der AOT40-Werte hat dies Unterschiede im Bereich weniger Prozent zur Folge).

Der **Critical Level für Wald** (10 ppm.h) wurde im Jahr 2002 an allen Messstellen in Österreich überschritten. Ähnlich wie beim Schwellenwert zur Schutz der Vegetation wurde die höchste Belastung in Hoch- und Mittelgebirgslagen (bis zu dem Vierfachen des Critical Levels), im Hügel- und Flachland im Nord- und Südosten Österreichs beobachtet (bis zum Dreifachen).

Der Critical Level zum Schutz landwirtschaftlicher Pflanzen (3 ppm.h) wurde 2002 ebenfalls an allen Messstellen Österreichs überschritten, z.T. um das mehr als Achtfache im Hoch- und Mittelgebirge, um mehr als das Siebenfache im nord- und südöstlichen Flach- und Hügelland. Zumindest um mehr als das Doppelte wurde der Critical Level an den meisten vegetationsrelevanten Messstellen überschritten.

Außerordentlich hoch war somit die Belastung sowohl für Wald wie auch für landwirtschaftliche Pflanzen, Weiden und natürliche Vegetation im Hochgebirge sowie im Nord- und Südosten Österreichs.

Der in der EU-RL 2002/3/EG festgelegte **Zielwert zum Schutz der Vegetation** von 9 ppm.h (18.000 μg/m³.h), gemittelt über fünf Jahre – d.h. 1998 bis 2002 – wurde im Großteil Österreichs überschritten, und zwar an allen Messstellen im Burgenland, an den meisten Messstellen in Niederösterreich, der Steiermark und Vorarlberg und zahlreichen Messstellen in Kärnten, Oberösterreich, Salzburg, Tirol und Wien. Von 102 Messstellen, für welche Daten über den Zeitraum von 1998 bis 2002 vorliegen, wiesen 71 (d.h. 70%) eine Überschreitung auf²⁶.

Die regionale Verteilung des Belastungsbildes war vergleichbar mit demjenigen der oben genannten Parameter zum Schutz der Vegetation.

Umweltbundesamt/Federal Environment Agency – Austria

²⁶ Der Anteil der Messstellen mit Überschreitung liegt noch höher, wenn man die städtischen, nicht für den Schutz der Vegetation relevanten Messstellen ausklammert; diese weisen i.d.R. niedrigere kumulative Ozonbelastungen auf aus ländliche und v.a. höher gelegene Messstellen

Betrachtet man nur das Jahr 2002, so wurde der AOT40-Wert von 9 ppm.h ebenfalls an fast allen Messstellen Österreichs überschritten, wobei vor allem Messstellen im Südosten besonders hohe kumulative Ozonbelastungen aufwiesen.

Trend

Spitzenbelastung

Die Spitzenbelastung (bewertet anhand der Überschreitungen der Vorwarnstufe, siehe Tabelle 28 und des Schwellenwertes zur Unterrichtung der Bevölkerung, siehe Tabelle 29) war im Jahr 2002 vergleichsweise sehr niedrig. Gemeinsam mit 1993 und 1999 war 2002 das einzige Jahr seit Inkrafttreten des Ozongesetzes 1992, in dem die Vorwarnstufe nicht ausgerufen wurde.

Tabelle 28: Überschreitungen des Grenzwertes der Vorwarnstufe in den Jahren 1990 bis 2002

Jahr	MV	N3 > 200 μg/m³	Tage mit Vorwarnstufe	Max. MW3 (μg/m³)	Messstelle	
	Tage	Messstellen				
		(von insgesamt)				
1990	17	20 (70) ²⁷	-	252	Illmitz	
1991	10	11 (82)	2 ²⁸	242	Wien Hermannskogel	
1992	10	22 (107)	9	346	Exelberg (Wien Hermannskogel 305)	
1993	5	6 (122)	0	215	Exelberg	
1994	16	22 (120)	19 ²⁹	240	Wien Hohe Warte (Wien Donauturm 270 ³⁰)	
1995	12	12 (125)	5	248	Mödling	
1996	6	6 (120)	3	219	Vorhegg (Rax 224)	
1997	0	0 (113)	0	190	Lobau	
1998	6	16 (113)	4	254	Klosterneuburg	
1999	2	2 (110)	0	217	Klosterneuburg	
2000	6	10 (115)	1	221	Gänserndorf	
2001	2	4 (113)	5	243	Streithofen	
2002	1	1 (113)	0	201	Schwechat	

Bei den Überschreitungen des Schwellenwerts zur Unterrichtung der Bevölkerung (entspricht dem Informationsschwellenwert) wiesen seit 1990 lediglich die Jahre 1997 und 1999 – sowohl was die Anzahl der Messstellen als auch die Anzahl der Tage mit MW1 über 180 μ g/m³ betrifft – eine niedrigere Belastung auf (Tabelle 29). Ein wesentlicher Grund für die niedrige Spitzenbelastung im Jahr 2002 war das wechselhafte Wetter im Hochsommer, wobei in der ersten Augusthälfte v.a. im Norden Österreichs extreme Regenmengen fielen.

-

²⁷ Noch keine Messstellen in Burgenland, Kärnten, Steiermark und Wien.

²⁸ Ausrufung der Vorwarnstufe auf informeller Basis bereits vor Inkrafttreten des Ozongesetzes

Die Vorwarnstufe blieb 1994 und 2001 auch an Tagen aufrecht, an denen die Konzentration unter 0,200 mg/m³ als MW3 lag.

³⁰ Wien Donauturm und Rax waren Forschungsmessstellen

Relativ hoch war die Spitzenbelastung, verglichen mit den letzten zehn Jahren, in Vorarlberg sowie im Bereich südlich von Wien.

Tabelle 29: Anzahl der Tage und der Messstellen mit MW1 über 180 μg/m³ (Schwellenwert zur Unterrichtung der Bevölkerung) sowie jene Messstelle mit den meisten Überschreitungen, 1990 – 2002

	Anzahl der Tage	Anzahl der Messstellen (Gesamtzahl)	Messstelle mit den meisten Überschreitungen
1990	43	30 (70)	Sulzberg (18)
1991	20	27 (82)	Gänserndorf (7)
1992	29	50 (107)	Exelberg (9), Traun (9)
1993	27	50 (122)	Stixneusiedl (7)
1994	34	66 (120)	Exelberg (17), Wien Hermannskogel (14)
1995	31	50 (125)	Exelberg (11), Payerbach (7)
1996	21	51 (120)	Vorhegg (8)
1997	13	11 (113)	Hainburg (3)
1998	21	55 (113)	Wien Lobau (9)
1999	8	15 (110)	Stockerau (4)
2000	28	61 (115)	Illmitz (8)
2001	18	46 (113)	Dunkelsteinerwald, Himberg (je 5)
2002	14	26 (113)	Schwechat (4)

Bei der Spitzenbelastung - bewertet etwa als 98-Perzentil der MW1 des Jahres (Abbildung 21) oder Überschreitungshäufigkeit des Schwellenwertes zur Unterrichtung der Bevölkerung - ist seit 1993 tendenziell eine Abnahme zu verzeichnen, die allerdings an nur sehr wenigen Messstellen statistische Signifikanz besitzt.

Eine Interpretation des Trends der Spitzenbelastungen ist schwierig, da diese sehr empfindlich von den meteorologischen Bedingungen während kurzer Zeiträume im Hochsommer, speziell im Raum Wien, abhängen. Eine definitive Aussage, ob der Rückgang der Spitzenbelastung vor allem im Nordostösterreich auf einen Rückgang des Ozonbildungspotentials im Raum Wien, d.h. der Emissionen der Ozonvorläufersubstanzen, zurückzuführen ist, ist ohne den Einsatz entsprechend räumlich hoch aufgelöster photochemischer Modelle nicht möglich.

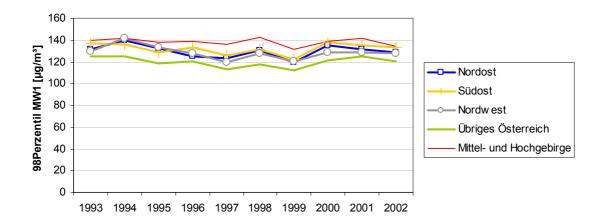


Abbildung 21: 98-Perzentil der MW1 in den Jahren 1993 bis 2002 in verschiedenen Regionen Österreichs³¹.

Trend des Zielwertes (MW8>110 µg/m³ zum Schutz des Menschen)

Ein etwas anderes Bild als die Spitzenbelastungen zeigen die Überschreitungen des Zielwertes von 110 μ g/m³ als MW8a oder MW8b. An zahlreichen Stationen wurde in den letzten drei Jahren eine deutlich höhere Anzahl an Überschreitungen, verglichen mit Mitte der 90er Jahre, beobachtet, diese erreichte vergleichbare Werte wie zu Beginn der 90er Jahre (Abbildung 22 zeigt den Trend an einzelnen Messstellen, Abbildung 23 in verschiedenen Regionen Österreichs, wobei, um eine ausreichend große Anzahl von Messstellen zu berücksichtigen, der Trend ab 1993 berechnet wurde).

Bei einem Großteil der Stationen weist die Anzahl der Überschreitungen des Zielwertes eine ansteigende Tendenz auf, die jedoch zumeist statistisch nicht signifikant ist.

Messstellen unter 1000 m Seehöhe – sowie im Mittel- und Hochgebirge (8 Messstellen).

³¹ Gemittelt für die Ozonüberwachungsgebiete 1 (Nordostösterreich, 33 Messstellen), 2 (Südostösterreich, 10 Messstellen), 3 (Nordwesten, d.h. Oberösterreich und nördl. Salzburg, 13 Messstellen) und die Gebieten 4, 5, 6, 7 und 8 ("übriges Österreich", 23 Messstellen) – jeweils gemittelt über alle

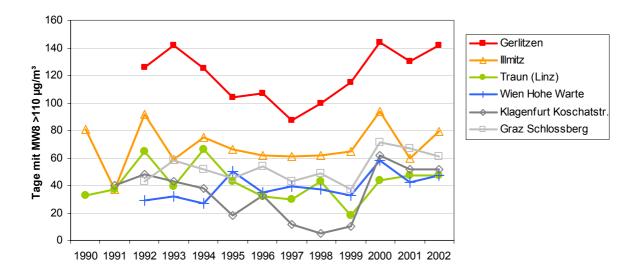


Abbildung 22: Anzahl der Tage mit Überschreitung des Zielwertes laut IG-L (110 μg/m³ als MW8a oder MW8b) in den Jahren 1991 bis 2002 an ausgewählten Messstellen

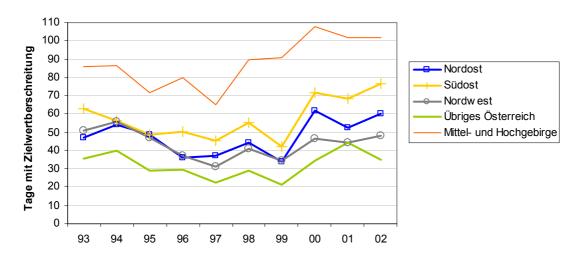


Abbildung 23: Anzahl der Tage mit Überschreitung des Zielwertes laut IG-L (110 μg/m³ als MW8a oder MW8b) in den Jahren 1993 bis 2002 in verschiedenen Regionen Österreichs.

Trend des Vegetationsschwellenwertes

Bei der Langzeitbelastung – bewertet anhand der Überschreitungen des Vegetationsschwellenwertes von 65 μ g/m³ als TMW – wies 2002 fast ganz Österreich eine überdurchschnittliche Belastung auf, vor allem das Burgenland, Niederösterreich, Wien, Oberösterreich und die Steiermark.

Abbildung 24 gibt den Trend der Überschreitungen des Vegetations-Schwellenwertes in den Jahren 1991 bis 2002 an ausgewählten Messstellen an.

Das Jahr 2002 wies somit im Großteil Österreichs die höchste Langzeitbelastung seit Beginn der Neunzigerjahre³² auf. Nur in Nordtirol war 1998 höher belastet, in Wien und im südlichen Niederösterreich das Jahr 2000, in Kärnten und Salzburg die Jahre 2000 und 2001.

Umweltbundesamt/Federal Environment Agency - Austria

³² Ab 1990 war die internationale Vergleichbarkeit des Referenzstandards sichergestellt

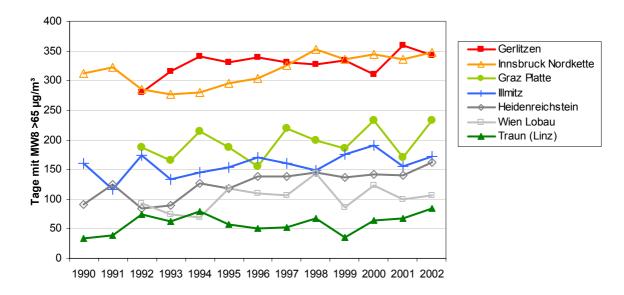


Abbildung 24: Anzahl der TMW über 65 μg/m³ pro Jahr an ausgewählten Messstellen, 1991 bis 2002

Trend der AOT40 Werte

Bei den AOT40-Werten gemäß RL 2002/3/EG wies das Jahr 2002 im Großteil Österreichs ebenfalls eine deutlich überdurchschnittliche Belastung auf, wobei das Burgenland, Niederösterreich und die Steiermark eine besonders hohe kumulative Ozonbelastung zeigten.

Trend der Jahresmittelwerte

Der Langzeittrend der Ozonbelastung zeigt seit Beginn der Neunzigerjahre ein statistisch signifikantes Ansteigen u.a. des JMW. Dieser Anstieg ist an höher gelegenen Messstellen mit ohnehin hoher Langzeitbelastung am ausgeprägtesten. Abbildung 25 gibt für die JMW von 80 Messstellen Mittelwert, Maximum, Minimum und 95-Perzentil der Jahre 1993 bis 2002 an und verdeutlicht diese Entwicklung. Die Auswertung umfasst jene Messstellen, die in diesem Zeitraum durchgehend in Betrieb waren; die maximalen JMW traten an den Messstellen Sonnblick und Gerlitzen auf.

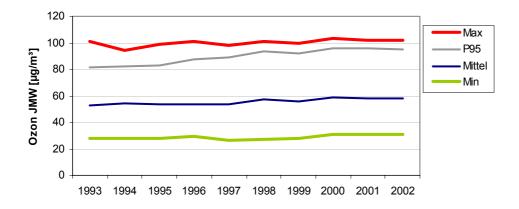


Abbildung 25: Mittelwert, Maximum, Minimum und 95-Perzentil der JMW aller österreichischer Ozonmessstellen in den Jahren 1993 bis 2002.

Die Zunahme der Langzeit-Ozonbelastung – d.h. der Überschreitungen des Zielwertes zum Gesundheitsschutz (MW8 > 110 µg/m³), des Schwellenwertes zum Schutz der Vegetation (TMW > 65 µg/m³), der AOT40-Werte und der JMW – betrifft ganz Österreich. Er ist somit nicht auf einen Rückgang der NO_X-Belastung in städtischen Gebieten zurückzuführen – ein derartiger Einfluss wäre einerseits direkt über den Ozonabbau durch hohe NO-Konzentrationen, andererseits durch eine Veränderung der Ozonchemie möglich. Da auch ländliche Regionen mit NO-Jahresmittelwerten um 1 µg/m³ und NO₂-JMW unter 10 µg/m³, aber auch hochalpine Regionen mit NO_X-JMW um 1 µg/m³ eine Zunahme der Ozon-Langzeitbelastung aufweisen, ist ein lokaler Einfluss der NO_X-Belastung auf die Ozonbelastung auszuschließen. Im Gegensatz dazu könnte der Rückgang der Ozon-Langzeitbelastung 2002 an einzelnen städtischen Messstellen sowie im Unterinntal mit einer Zunahme der NO_X-Konzentration zusammen hängen.

Die in nahezu ganz Österreich in allen Höhenlagen beobachtete langfristige Zunahme der Ozon-Langzeitbelastung kann somit auf eine Zunahme des großflächigen Belastungsniveaus und eine verstärkte Ozonbildung auf regionalem Maßstab zurückgeführt werden.

Dieser Trend – statistisch wenig signifikante Abnahme der Spitzenbelastungen, aber Zunahme der Langzeitbelastungen – zeichnet sich in weiten Teilen Europas ab, wie Untersuchungen der Europäischen Umweltagentur zeigen³³.

4.8 Staubniederschlag

Das österreichische Staubniederschlagsmessnetz ist räumlich relativ heterogen verteilt. Umfangreiche Messungen erfolgen im weiteren Umgebungsbereich von einigen Industrieanlagen u.a. in Leoben, Kapfenberg, Arnoldstein und Brixlegg. An einer Auswahl der Staubniederschlagsmessstellen wird der Staubniederschlag auf Inhaltsstoffe, u.a. auf die Schwermetalle Blei und Cadmium analysiert.

^{33 &}quot;Europäische Umweltagentur: Air Pollution by Ozone in Europe, summer 2002. http://repository.eea.eu.int/reports/topic_report/2002_6/full_report/en/html/abstract

Insgesamt wurden 2002 156 Staubniederschlags-Messstellen betrieben. An 113 Staubniederschlagsmessstellen wurde der Gehalt von Blei und Cadmium im Staubniederschlag analysiert.

Jene Messstellen, an denen der Grenzwert für den Staubniederschlag, für Blei oder für Cadmium im Staubniederschlag überschritten wurden, sind mit den jeweiligen Jahresmittelwerten in Tabelle 30 zusammengestellt. Jene Werte, die über dem Grenzwert liegen, sind fett gedruckt.

Tabelle 30: Überschreitungen der Grenzwerte des IG-L für Staubniederschlag, Blei und Cadmium im Staubniederschlag 2002. Überschreitungen sind fett dargestellt (Jahresmittelwerte in mg/(m².d)).

			Staub	Pb	Cd
BL	Messstelle	Verfügbarkeit (%)	mg/m².d	mg/m².d	
Kärnten	Arnoldstein Forst Ost I	100	77	0,127	0,0007
Kärnten	Arnoldstein Forst West IV	100	238	0,069	0,0006
Kärnten	Arnoldstein Gailitz 163	92	182	0,097	0,0030
Kärnten	Arnoldstein Gailitz Werkswohnung	100	112	0,327	0,0024
Kärnten	Arnoldstein Kuppe Südost	92	50	0,237	0,0012
Kärnten	Arnoldstein Stossau West II	100	99	0,173	0,0015
Steiermark	Kapfenberg Forststr.	93	296		
Steiermark	Leoben Donawitz BFI	100	344		
Steiermark	Leoben Judaskreuzsiedlung	79	249		
Steiermark	Leoben Zellenfeldgasse	100	242		
Tirol	Brixlegg Bahnhof	100	106	0,110	0,0010
Tirol	Brixlegg Innweg	100	81	0,204	0,0040

Der Grenzwert des IG-L für den Staubniederschlag von 210 mg/(m².d) als Jahresmittelwert wurde im Jahr 2002 an einer Messstelle in Arnoldstein, einer Messstelle in Kapfenberg und drei Messstellen in Leoben überschritten. Der höchste Staubniederschlag wurde mit 344 mg/(m².d) in Leoben Donawitz BFI gemessen.

Hohe Staubniederschlagswerte (über 150 mg/(m².d)) wurden an weiteren Messstellen in Arnoldstein, Hallein, Leoben, Graz, Imst, Innsbruck, Wörgl, Bludenz und Lorüns gemessen.

Der Grenzwert für Blei im Staubniederschlag mit 0,100 mg/(m².d) als Jahresmittelwert wurde 2002 an 4 Messstellen in Arnoldstein und zwei Messstellen in Brixlegg überschritten. Der höchste Messwert trat mit 0,327 mg/(m².d) in Arnoldstein Gailitz Werkswohnung auf.

Hohe Blei-Werte im Staubniederschlag (über 0,050 mg/(m².d)) wurden an weiteren Messstellen in Arnoldstein und Reith bei Brixlegg gemessen.

Der Grenzwert für Cadmium im Staubniederschlag mit 0,002 mg/(m².d) als Jahresmittelwert wurde 2001 an je einer Messstelle in Arnoldstein und Brixlegg überschritten. Der höchste Messwert trat mit 0,0040 mg/(m².d) in Brixlegg Innweg auf.

Hohe Cadmium-Werte im Staubniederschlag (über 0,001 mg/(m².d)) wurden an weiteren Messstellen in Arnoldstein und Reith bei Brixlegg gemessen.

Gemäß IG-L, §8 besteht bei Ausweisung dieser Grenzwertverletzungen nach dem 1.1.2003 die Notwendigkeit eine Statuserhebung durchzuführen.

Keine Grenzwertverletzungen wurden an städtischen Messstellen in Wien, Linz, Salzburg und Innsbruck sowie an den repräsentativ über das Land Salzburg verteilten Messstellen registriert.

4.9 EMEP-Messergebnisse

Im Rahmen des Vollzugs des IG-L werden an den drei Hintergrundmessstellen Illmitz (B), St. Koloman (S) und Vorhegg (K) Messungen weiterer Komponenten durchgeführt, die in erster Linie zur Beurteilung des Ausmaßes des weiträumigen, grenz-überschreitenden Schadstofftransports benötigt werden. Die Messungen umfassen folgende Komponenten:

- Niederschlagsmenge, pH, Leitfähigkeit des Niederschlags
- Regeninhaltsstoffe Nitrat, Sulfat, Ammonium, Chlorid, Natrium, Kalium, Calcium und Magnesium.

In Illmitz werden darüber hinaus noch partikuläres Sulfat sowie die Summe aus Ammoniak und Ammonium bzw. aus Nitrat und Salpetersäure bestimmt.

Eine detaillierte Beschreibung der Messungen findet sich im Jahresbericht 2002 der Luftgütemessungen des Umweltbundesamtes (SPANGL 2003).

58	Jahresbericht der Luftgütemessungen in Österreich 2002

5 Resümee und Ausblick

5.1 Die Immissionssituation 2002

Der vorliegende Bericht ist der vierte Jahresbericht, der gemäß Messkonzept-VO (BGBI. II 358/98) erstellt wurde. Der Berichtszeitraum umfasst Messungen von Luftschadstoffen im Kalenderjahr 2002.

Wie bereits mehrfach angeführt, war 2002 das erste Jahr, in dem Messungen von Schwebestaub als **PM10** flächendeckend in ganz Österreich durchgeführt wurden. Die gemessenen PM10-Konzentrationen liegen in nahezu allen größeren Städten - und zwar bevorzugt an verkehrsnahen Standorten - , aber auch in zahlreichen Kleinstädten vor allem im Südosten Österreichs, in Tirol und Vorarlberg sowie flächenhaft im Nordosten Österreichs über dem als Tagesmittelwert formulierten Grenzwert des IG-L (50 µg/m³; 35 Überschreitungen pro Jahr sind zulässig). In den Tal- und Beckenlagen südlich des Alpenhauptkamms stellen die ungünstigen Ausbreitungsbedingungen v.a. in den Wintermonaten einen wesentlichen Faktor für die relativ hohe Belastung dar. Erhebliche Kenntnislücken bestehen noch in Bezug auf die Quellen und Ursachen der PM10-Belastung. Hier besteht nach wie vor ein dringender Forschungsbedarf, um in Zukunft effiziente Maßnahmen zur Einhaltung der Grenzwerte setzen zu können.

Beim **Gesamtschwebestaub** waren die Belastungsschwerpunkte, wie in den vergangen Jahren auch, die Ballungsräume Graz, Linz und Wien sowie Innsbruck, daneben ebenso wie bei PM10 Klein- und Mittelstädte in Tal- und Beckenlagen südlich des Alpenhauptkamms. Im Jahr 2002 lag die Schwebestaubbelastung an den meisten Standorten über jener des Jahres 2001.

Die **Schwefeldioxid**belastung ist 2002 gegenüber den Neunzigerjahren sowohl in den grenznahen Regionen, die in den letzten Jahrzehnten von erheblichem grenz- überschreitenden SO₂-Transport betroffen waren, als auch in den Städten und an den meisten industrienahen Standorten weiter leicht zurückgegangen. Nach wie vor traten Grenzwertverletzungen in Arnfels an der slowenischen Grenze sowie im Nahbereich einzelner Industriebetriebe auf; die SO₂-Spitzenbelastung war damit etwas höher als 2001. Die Grenzwerte zum Schutz der Ökosysteme und der Vegetation wurden überall eingehalten.

Bei **Stickstoffdioxid** stellen wie in den letzten Jahren die größeren Städte und verkehrsnahe Standorte (u.a. die Inntalautobahn) die Schwerpunkte der Belastung dar. Überschreitungen des IG-L-Kurzzeitgrenzwerts (200 µg/m³ als HMW) wurden 2002 v.a. in Salzburg und Graz registriert.

Die Summe aus Grenzwert (30 μ g/m³) und Toleranzmarge (im Jahr 2002 25 μ g/m³) für den Jahresmittelwert wurde an drei Standorten in Wien, Salzburg und im Unterinntal überschritten. Der Grenzwert (30 μ g/m³) selbst wurde an zahlreichen Messstellen in ganz Österreich, sowohl in größeren Städten als auch an ländlichen autobahnnahen Standorten, überschritten. Mit der Absenkung der Toleranzmarge in den kommenden Jahren wird es – bei gleichbleibendem Belastungsniveau – zu verbreiteten Überschreitungen der Summe aus Grenzwert und Toleranzmarge kommen.

Der Grenzwert für NO_X zum Schutz der Vegetation wurde an den auf gesetzlicher Basis zum Schutz der Vegetation betriebenen Messstellen eingehalten. Überschrei-

tungen traten allerdings an mehreren weiteren, für Waldgebiete relevanten Messstellen auf.

Die Grenzwerte für **Kohlenstoffmonoxid**, **Blei** im Schwebestaub und **Benzol** wurden 2002 wie schon in den letzten Jahren an allen österreichischen Messstellen eingehalten.

Die **Alarmwerte** des IG-L für SO₂ und NO₂ wurden im Jahr 2002 an allen österreichischen Messstellen eingehalten.

Die Kurzzeit-Spitzenwerte der **Ozon**-Konzentration wiesen 2002 als ein vergleichsweise niedrig belastetes Jahr aus. Der Grenzwert der Vorwarnstufe des Ozongesetzes wurde an einem Tag an einer Messstelle überschritten, die Vorwarnstufe wurde nicht ausgerufen; der Informationsschwellenwert wurde an 14 Tagen an insgesamt 26 Messstellen überschritten.

Der Zielwert zum Schutz der menschlichen Gesundheit des IG-L wurde in ganz Österreich überschritten, in den größeren Städten an bis zu 60 Tagen, im ländlichen Raum Nordostösterreichs an bis zu 80 Tagen, im Mittelgebirge an bis zu 110 Tagen. Der Zielwert zum Schutz der Vegetation wurde in ganz Österreich überschritten, im Hoch- und Mittelgebirge mit mehr als 90% der Tage in extremem Ausmaß, im Flach- und Hügelland Nordostösterreichs an über 50%, im Südosten an über 60% der Tage. Massive Überschreitungen traten bei den Critical Levels zum Schutz des Waldes und landwirtschaftlicher Nutzpflanzen in fast ganz Österreich auf. Der Zielwert zum Schutz der Vegetation der neuen Ozon-RL wurde an 70% der österreichischen Messstellen überschritten.

Der Grenzwert für **Staubniederschlag** wurde 2002 an einzelnen Messstellen in Arnoldstein, Kapfenberg und Leoben-Donawitz überschritten. Bei den Staubinhaltsstoffen **Blei** und **Cadmium** wurden Überschreitungen im Bereich von industriellen Anlagen in Arnoldstein und Brixlegg registriert (aus Donawitz liegen keine Messdaten für Blei und Cadmium vor).

5.2 Statuserhebungen und Maßnahmenkataloge

Das IG-L ist seit 1. April 1998 in Kraft. Das erste Jahr, innerhalb dessen Messungen gemäß IG-L durchgeführt wurden, war 1999. Tabelle 31, Tabelle 32 und Tabelle 33 enthalten die Grenzwertüberschreitungen, die an IG-L-Messstellen registriert wurden³⁴ (siehe Jahresberichte der Luftgütemessungen in Österreich 1999, 2000 und 2001).

³⁴ Anmerkung: 1999 wurden an keiner Wiener Messstelle Messungen gemäß IG-L durchgeführt.

Tabelle 31: Überschreitungen von Grenzwerten an IG-L-Messstellen 1999

Gebiet	Messstelle	Schad- stoff	Statuserhebung durchgeführt	Maßnahmenkatalog
Kärnten	St. Georgen Herzogberg	SO ₂	abgeschlossen	Transport aus dem Ausland ³⁵
Kärnten	Klagenfurt Völkermarkterstr.	TSP	nein - singuläres Ereignis	-
BR Linz	Steyregg	TSP	abgeschlossen	Entwurf
BR Linz	Linz 24er Turm	TSP	abgeschlossen	Entwurf
BR Linz	ORF-Zentrum	TSP	abgeschlossen	Entwurf
Salzburg	Salzburg Rudolfsplatz	TSP	nein - singuläres Ereignis	-
Steiermark	Leoben Donawitz	TSP	abgeschlossen	
Steiermark	Weiz	TSP	abgeschlossen	
BR Graz	Graz Nord	TSP	abgeschlossen	
BR Graz	Graz Süd	TSP	abgeschlossen	
BR Graz	Graz Mitte	TSP	abgeschlossen	
Vorarlberg	Feldkirch Bärenkreuzung	TSP	nein ³⁶	-
Kärnten	Villach	NO ₂	nein - singuläres Ereignis	-
Kärnten	Klagenfurt Koschatstr.	NO ₂	nein - singuläres Ereignis	-
Steiermark	Straßengel	NO ₂	nein - singuläres Ereignis	-
BR Graz	Graz Nord	NO_2	abgeschlossen	
BR Graz	Graz Mitte	NO_2	abgeschlossen	
Tirol	Vomp	NO ₂	abgeschlossen	VO BGBI. II 349/2002 ³⁷ BGBI. II 423/2002 und 192/2003
Tirol	Reichenau	NO_2	abgeschlossen	
Tirol	Hall i.T.	NO ₂	abgeschlossen	

³⁷ Nachtfahrverbot

kein Maßnahmenkatalog notwendig
 Entsprechenden Untersuchungen des Amtes der Vorarlberger LR haben zu geeigneten Maßnahmenplänen geführt, wurden aber formal nicht gemäß IG-L als Statuserhebung durchgeführt.

Tabelle 32: Überschreitungen von Grenzwerten an IG-L-Messstellen 2000

Gebiet	Messstelle	Schadstoff	Statuserhebung durchgeführt	Maßnahmen- katalog
Kärnten	Wolfsberg	TSP		
Kärnten	St. Andrä	TSP	singuläres Ereignis	-
Kärnten	Klagenfurt Völkermarkterstr.	TSP		
Kärnten	Völkermarkt	TSP	singuläres Ereignis	-
NÖ	St. Valentin	TSP		
OÖ	Linz Neue Welt	TSP	singuläres Ereignis	-
Steiermark	Weiz	TSP	bereits 1999 ³⁸	-
Steiermark	Hartberg	TSP	abgeschlossen	
Steiermark	Köflach	TSP	abgeschlossen	
BR Graz	Graz West	TSP	bereits 1999	-
BR Graz	Graz Mitte	TSP	bereits 1999	-
BR Graz	Graz Süd	TSP	bereits 1999	-
BR Graz	Graz Don Bosco	TSP	bereits 1999	-
Tirol	Innsbruck Reichenau	TSP	singuläres Ereignis	
OÖ	Braunau Zentrum	NO_2	singuläres Ereignis	-
Salzburg	Salzburg Mirabellplatz	NO ₂	singuläres Ereignis	-
Wien	Hietzinger Kai	NO_2	abgeschlossen	
Wien	Wien Taborstraße	NO ₂	singuläres Ereignis	-

 $^{^{38}}$ gemäß IG-L, §8 Abs. 7 kann eine Statuserhebung unterbleiben, falls für den selben Luftschadstoff bereits eine Statuserhebung erlassen wurde

Tabelle 33: Überschreitungen von Grenzwerten an IG-L-Messstellen 2001

Gebiet	Messstelle	Schadstoff	Statuserhebung	Maßnahmen- katalog
BR Linz	Linz 24er Turm	TSP	abgeschlossen	
BR Linz	Linz ORF-Zentrum	TSP	abgeschlossen	
BR Graz	Graz Don Bosco	TSP	abgeschlossen	
Steiermark	Weiz	TSP	abgeschlossen	
Tirol	Lienz	TSP	abgeschlossen	
Wien	Laaerberg	TSP	abgeschlossen	
Wien	Liesing	TSP	abgeschlossen	
Wien	Rinnböckstr.	TSP	abgeschlossen	
Kärnten	Klagenfurt Völkermarkterstr.	PM10	abgeschlossen	
NÖ	Amstetten	PM10		
Steiermark	Köflach	PM10	abgeschlossen	
BR Graz	Graz Don Bosco	PM10	abgeschlossen	
BR Graz	Graz Mitte	PM10	abgeschlossen	
BR Graz	Graz Ost	PM10	abgeschlossen	
Tirol	Lienz Amlacherkreuzung	PM10	abgeschlossen	
NÖ	Vösendorf	NO ₂		
Wien	Hietzinger Kai	NO_2		
Wien	Liesing	NO ₂		
Wien	Stephansplatz	NO_2		

Für die Grenzwertüberschreitungen des Jahres 2002 wurden bereits folgende Statuserhebungen abgeschlossen:

Tabelle 34: Abgeschlossene Statuserhebungen zu Grenzwertüberschreitungen des Jahres 2002

Gebiet	Messstelle	Schadstoff	Maßnahmenkatalog
BR Linz	ORF-Zentrum	PM10	-
BR Linz	Römerberg	PM10	-
BR Linz	Neue Welt	PM10	-
BR Linz	24er Turm	PM10	-
BR Linz	Steyregg-Weih	PM10	-
BR Linz	ORF-Zentrum	TSP	-
BR Linz	Römerberg	TSP	-
BR Graz	Graz Don Bosco	TSP	-
BR Graz	Graz Süd	TSP	-
Steiermark	Kapfenberg	TSP	-
Steiermark	Leoben Göss	TSP	-
Steiermark	Leoben Zentrum	TSP	-
Steiermark	Pöls Ost	TSP	-
Steiermark	Weiz	TSP	-
Salzburg	Hallein Hagerkreuzung	NO_2	-
Salzburg	Salzburg Lehen	NO ₂	-
Salzburg	Salzburg Mirabellplatz	NO_2	-
Salzburg	Salzburg Rudolfsplatz	NO ₂	-
BR Graz	Graz Mitte	NO_2	-
Tirol	Vomp A12	NO ₂	VO BGBI. II 278/2003 VO BGBI. II 279/2003
Steiermark	Arnfels	SO ₂	-
Steiermark	Köflach	SO ₂	-
Steiermark	Straßengel	SO ₂	-

Für die NO₂-JMW-Grenzwertüberschreitung in Vomp A12 wurde bereits ein Maßnahmenplan ausgearbeitet und eine entsprechende Verordnung erlassen (sektorales Fahrverbot, VO BGBI. II 279/2003). Als weitere Maßnahme wurde das Nachtfahrverbot, dass aufgrund der HMW-Überschreitungen eingeführt wurde, über das ganze Jahr hinweg ausgedehnt (VO BGBI. II 278/2003). Das sektorale Fahrverbot wurde allerdings noch vor in Kraft treten dieser Verordnung mit 1.8.2003 aufgrund eines Beschlusses des Präsidenten des Gerichtshofes der Europäischen Gemeinschaften vorerst ausgesetzt.

Obschon somit seit 1999 eine Reihe von Statuserhebungen vorliegen, innerhalb derer die Verursacher ermittelt wurden (so war bei den meisten NO₂-Überschreitungen der Verkehr der Hauptverursacher, bei Schwebestaub industrielle Verursacher, Hausbrand und Verkehr), wurden bislang erst Maßnahmenkataloge für das Unterinntal (NO₂-Überschreitungen) erlassen. Einer der Hauptgründe für diese aus Sicht des Immissionsschutzes unbefriedigenden Situation ist sicherlich, dass das

IG-L vor der Novelle 2003 keine explizit festgelegte Frist enthält, innerhalb derer die Sanierungsmaßnahmen in Angriff zu nehmen sind. Mit der Novelle vom 11.6.2003 wurde eine Frist von 15 Monaten nach Ausweisung der Überschreitung für das Erlassen eines Maßnahmenkatalogs festgesetzt.

5.3 Überschreitungen der Grenzwerte der EU-Richtlinien 1999/30/EG und 2000/69/EG

NO₂, NO_X

Der Grenzwert der RL 1999/30/EG für NO_2 – 200 µg/m³ als **Einstundenmittelwert**, wobei bis zu 18 Überschreitungen im Kalenderjahr erlaubt sind – wurde 2002 an allen Messstellen in Österreich **eingehalten**.

Der Grenzwert der RL 1999/30/EG für NO_2 – 40 µg/m³ als **Jahresmittelwert** – wurde 2002 an den 13 Messstellen Vomp A12 Raststätte, Wien Hietzinger Kai, Salzburg Rudolfsplatz, Feldkirch, Hallein Hagerkreuzung, Wien Rinnböckstraße, Graz Don Bosco, Vomp - an der Leiten, Linz Römerberg, Wien Taborstraße, Graz Mitte, Hall i.T. und Gärberbach überschritten.

Die Summe aus **Grenzwert und Toleranzmarge** – letztere beträgt für 2002 16 μ g/m³ – , d.h. 56 μ g/m³ als Jahresmittelwert, wurde an den Messstellen Vomp A12 Raststätte und Wien Hietzinger Kai **überschritten**.

Für Gebiete, in denen die Konzentration die Summe aus Grenzwert und Toleranzmarge überschreitet, sind gemäß Luftqualitätsrahmenrichtlinie Art. 8 (1) Pläne oder Programme zu erstellen, aufgrund derer der Grenzwert in einer festgelegten Frist erreicht werden kann.

Für die Überschreitung in Vomp A12 wurde mit der VO BGBI. II 279/2003 ein entsprechender Maßnahmenplan erlassen.

Der Grenzwert der RL 1999/30/EG für NO_X zum Schutz der Vegetation – 30 µg/m³ als Jahresmittelwert, angegeben als NO_2 – wurde an allen auf gesetzlicher Grundlage zum Schutz der Vegetation betriebenen Messstellen eingehalten.

PM10

Der Grenzwert der RL 1999/30EG für **PM10** – 50 μ g/m³ als **Tagesmittelwert**, wobei bis zu 35 Überschreitungen pro Kalenderjahr erlaubt sind – ist ident mit dem Grenzwert des IG-L und wurde an den in Tabelle 1b genannten Messstellen überschritten.

Die Summe aus **Grenzwert und Toleranzmarge** – 65 μ g/m³ als TMW, wobei bis zu 35 Überschreitungen pro Kalenderjahr erlaubt sind – wurde 2002 an den Messstellen Graz Don Bosco, Graz Mitte, Graz Ost und Feldkirch **überschritten**.

Der Grenzwert für **PM10** – 40 μ g/m³ als **Jahresmittelwert** – wurde an den Messstellen Graz Don Bosco und Graz Mitte überschritten (siehe Tabelle 1b). In Graz Don Bosco wurde auch die Summe aus **Grenzwert und Toleranzmarge** für den Jahresmittelwert von PM10 (46 μ g/m³) **überschritten**.

Wie bei NO_2 sind für Gebiete, in denen die Konzentration die Summe aus Grenzwert und Toleranzmarge überschreitet, gemäß Luftqualitätsrahmenrichtlinie Art. 8 (1) Pläne oder Programme zu erstellen, aufgrund derer der Grenzwert in einer festgelegten Frist erreicht werden kann.

SO₂, Blei, CO

Die Grenzwerte der RL 1999/30/EG für **SO**₂ wurden im Jahr 2002 an allen Messstellen in Österreich **eingehalten**.

Der Grenzwert der RL 1999/30/EG für **Blei** – 0,5 μ g/m³, ident mit dem Grenzwert des IG-L – wurde an allen Messstellen in Österreich **eingehalten**.

Die Grenzwerte der RL 2000/69/EG für **CO** (10 mg/m³) und Benzol (5 μ g/m³) – ident mit den Grenzwerten des IG-L – wurden an allen Messstellen in Österreich **eingehalten**.

5.4 Vorschau: Neue gesetzliche Regelungen 2003

Im Februar 2002 ist die dritte Tochterrichtlinie zur Luftqualitätsrahmenrichtlinie in Kraft getreten, umzusetzen in nationales Recht bis 9.9.2003. Diese Richtlinie (2002/3/EG) behandelt den Schadstoff Ozon und ersetzt die alte EU-Ozonrichtlinie 92/72/EWG und wurde mit dem BGBI. I 34/2003 umgesetzt.

Als wesentliche neue Punkte beinhaltet diese Richtlinie Zielwerte und langfristige Ziele zum Schutz der menschlichen Gesundheit sowie der Vegetation. Für die Überwachung der kurzzeitigen Ozonspitzenbelastung und die entsprechende Information der Öffentlichkeit wurde der Informationsschwellenwert (180 μ g/m³ als MW1) aus der früheren Ozon-RL übernommen und ein Alarmschwellenwert von 240 μ g/m³ als MW1 festgesetzt.

Zielwert ist in der Richtlinie definiert als ein Wert, der mit dem Ziel festgelegt wird, schädliche Auswirkungen auf die menschliche Gesundheit und/oder die Umwelt insgesamt langfristig zu vermeiden, und der — so weit wie möglich — in einem bestimmten Zeitraum erreicht werden muss.

Das **langfristige Ziel** ist eine Ozonkonzentration in der Luft, unterhalb derer direkte schädliche Auswirkungen auf die menschliche Gesundheit und/oder die Umwelt insgesamt nach den derzeitigen wissenschaftlichen Erkenntnissen unwahrscheinlich sind. Dieses Ziel ist langfristig zu erreichen, um die menschliche Gesundheit und die Umwelt wirksam zu schützen, es sei denn, dies ist mit Maßnahmen, die in einem angemessenen Verhältnis zum angestrebten Erfolg stehen, nicht erreichbar. Die numerischen Werte sind in Tabelle 35 zu sehen.

Die Schwellenwerte und Zielwerte dieser Richtlinie werden mit der Novelle zum Ozongesetz, BGBI. I 34/2003, in Kraft ab 1.Juli 2003, in nationales Recht umgesetzt.

rabelle 33. Elewerte und langinstige Elele der Ozonnentilline 2002/3/EG					
	Höhe	Anmerkungen			
Zielwert Schutz der Gesundheit	120 µg/m³ als Achtstundenmit- telwert	Nicht mehr als 25 Überschreitungen Jahr, gemittelt über drei Jahre; einzuhalten ab 2010			
Langfristiges Ziel Schutz der Gesundheit	120 µg/m³ als Achtstundenmittelwert	Keine Überschreitung			
Zielwert Vegetationsschutz	AOT40 ³⁹ von 9000 ppb.h	Gemittelt über fünf Jahre, einzuhalten ab 2010			
Langfristiges Ziel Vegetations- schutz	AOT40 von 3000 ppb.h	Keine Überschreitung			
Informationsschwelle	180 μg/m³ als MW1				
Alarmschwelle	240 μg/m³ als MW1	kurzfristige Maßnahmen ab Überschreitung über 3 aufeinanderfolgende Stunden			

Tabelle 35: Zielwerte und langfristige Ziele der Ozonrichtlinie 2002/3/EG

Die Richtlinie über nationale Emissionshöchstmengen (NEC⁴⁰-RL) ist im November 2001 in Kraft getreten (2001/81/EG). Innerhalb dieser Richtlinie wurden für jeden EU-Mitgliedstaat verbindliche jährliche Emissionshöchstmengen für die Schadstoffe SO₂, NO_X, NMVOC und NH₃ festgelegt, die ab 2010 einzuhalten sind. Die für Österreich gültigen Werte sowie die jeweiligen Emissionen aus dem Jahr 2001 sind Tabelle 36 zu entnehmen. Die Umsetzung der NEC-RL in nationales Recht erfolgt ebenfalls mit BGBI. I 34/2003.

Tabelle 36: Emissionen aus 2001 und Nationale Emissionshöchstmengen 2010 für Österreich

	Emissionen in kt		
Schadstoff	2001	Höchstmenge 2010	
SO ₂	37	39	
NO_X	199	103	
NMVOC	232	159	
NH ₃	54	66	

Zur Umsetzung der in Tabelle 36 genannten Ziele müssen bis Oktober 2002 Pläne erstellt werden, die bis Ende 2002 auch an die Europäische Kommission zu übermitteln gewesen wären. Insbesondere zur Erreichung des Ziels für NO_X werden über die bisher beschlossenen Maßnahmen hinaus zusätzliche Anstrengungen zur Erreichung der Ziele notwendig sein.

Nach Vorliegen aktueller Studien zu möglichen Maßnahmen in den Bereichen Verkehr und Industrie wird ein politisch akkordiertes Maßnahmenprogramm vom BM erstellt, das Ende 2003 an die Europäische Kommission übermittelt wird. Erschwert wird die Einhaltung der NEC-Ziele bis 2010 auch durch die nach Festlegung der Emissionshöchstmengen aufgrund verbesserter Erhebungen deutlich nach oben revidierten Emissionen von NO_X. Die Emissionsberechnungen von NH₃ und NMVOC wurden dagegen deutlich nach unten revidiert, damit dürfte die Einhaltung der NEC-

-

³⁹ Definition der AOT40-Werte siehe Glossar

⁴⁰ National Emission Ceilings

Ziele für diese Schadstoffe problemlos zu erreichen sein. In dem Statusbericht 2002 ("Österreichs Programm zur Einhaltung der nationalen Emissionshöchstmengen für bestimmte Luftschadstoffe") des BMLFUW wird als realistisches Ziel für NO_X Emissionen von 150 kt bis 2010 genannt.

Diese Maßnahmen werden jedenfalls einen positiven Effekt auf die Luftqualität und damit auf die Einhaltung der im IG-L enthaltenen Grenzwerte bzw. der neu zu übernehmenden Zielwerte für Ozon haben.

- Die NO_X-Emissionsreduktionen k\u00f6nnen dazu beitragen, den derzeit noch gro\u00dfl\u00e4chig \u00fcberschrittenen NO₂-Grenzwert von 30 μg/m³ (JMW) in weiten Teilen \u00dfsterreichs einzuhalten.
- Die Reduktion der Ozonvorläufersubstanzen NO_X und NMVOC in Österreich wird den "hausgemachten" Anteil verringern, während die entsprechenden Maßnahmen in den anderen EU-Mitgliedstaaten bzw. den Beitrittskandidatenländer helfen sollten, die Vorbelastung zu vermindern
- Alle vier der geregelten Schadstoffe tragen zur Bildung von sekundären Partikel bei und damit signifikant zur PM10- sowie zur PM2,5-Belastung. Die europaweiten Reduktionen sollten also mithelfen, die großflächig erhöhten PM10-Konzentrationen zu vermindern.

6 Literatur

- SCHNEIDER, J. und LORBEER G. (2002): Inhaltsstoffe von PM10 und PM2,5 an zwei Messstationen, Umweltbundesamt Wien.
- SPANGL, W., SCHNEIDER J. (2000): Jahresbericht der Luftgütemessungen in Österreich 1999. Umweltbundesamt Wien.
- SPANGL, W., SCHNEIDER J. (2001): Jahresbericht der Luftgütemessungen in Österreich 2000. Umweltbundesamt Wien.
- SPANGL, W., SCHNEIDER J. (2002): Jahresbericht der Luftgütemessungen in Österreich 2001. Umweltbundesamt Wien.
- ANDERL M. (2003): Luftschadstoff-Trends in Österreich 1980 2001. Umweltbundesamt Wien.
- SPANGL, W. (2002a): Luftgütemessstellen in Österreich. Stand Juni 2002. BE-213. Umweltbundesamt Wien.
- SPANGL, W. (2002b): JAHRESBERICHT 2001: Luftgütemessungen des Umweltbundesamtes und meteorologische Messungen. Umweltbundesamt Wien.
- SPANGL, W. (2003): JAHRESBERICHT 2002: Luftgütemessungen des Umweltbundesamtes und meteorologische Messungen. Umweltbundesamt Wien.
- WOLF, A., FRÖHLICH M. (2003): Internationale und nationale Vergleichsmessungen des EU-Referenzlabors des Umweltbundesamtes 1999 bis 2002. Umweltbundesamt Wien, in Vorbereitung.
- PONGRATZ, T. (2003): Statuserhebungen gemäß §8 IG-L, BGBI. I Nr. 115/1997 idgF., Amt der Steiermärkischen Landesregierung.

70	Jahresbericht der Luftgütemessungen in Österreich 2002
·	Imwelthundesamt/Federal Environment Agency Austria

Anhang 1: Immissionsgrenzwerte der EU-Richtlinien 1999/30/EG, 2000/69EG und 2002/3/EG

Da das IG-L im Vergleich zu den EU-Richtlinien bei manchen Schadstoffen strengere Grenzwerte bzw. keine Toleranzmargen vorsieht, sind nachfolgend die entsprechenden Grenz-, Ziel- und Schwellenwerte der entsprechenden Richtlinien angeführt.

Richtlinie 1999/30/EG über Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel und Blei in der Luft

Grenzwert für SO₂ gemäß Anhang I der Richtlinie 1999/30/EG

Schutzziel	Mittelungszeitraum	Grenzwert	Erlaubte Überschreitungen
Menschliche Gesundheit	1 Stunde	350 µg/m³	24
Menschliche Gesundheit	1 Tag	125 μg/m³	3
Ökosysteme	Kalenderjahr	20 μg/m³	
Ökosysteme	Winter (Okt. – März)	20 μg/m³	

Grenzwert für NO2 gemäß Anhang II der Richtlinie 1999/30/EG

Schutzziel	Mittelungszeitraum	Grenzwert	Erlaubte Überschreitungen
Menschliche Gesundheit	1 Stunde	200 μg/m³	18
Menschliche Gesundheit	Kalenderjahr	40 μg/m³	

Grenzwert für NO_X gemäß Anhang II der Richtlinie 1999/30/EG

Schutzziel	Mittelungszeitraum	Grenzwert (NO _X als NO ₂)
Vegetation	Kalenderjahr	30 μg/m³

Grenzwert für PM10 (Stufe 1) gemäß Anhang II der Richtlinie 1999/30/EG

Schutzziel	Mittelungszeitraum	Grenzwert	Erlaubte Überschreitungen
Menschliche Gesundheit	1 Tag	50 μg/m³	35
Menschliche Gesundheit	Kalenderjahr	40 μg/m³	

Grenzwert für Blei gemäß Anhang IV der Richtlinie 1999/30/EG

Schutzziel	Mittelungszeitraum	Grenzwert
Menschliche Gesundheit	Kalenderjahr	0,5 µg/m³

Richtlinie 2000/69/EG über Grenzwerte für Benzol und Kohlenmonoxid Grenzwert für Benzol gemäß Anhang I der Richtlinie 2000/69/EG

Schutzziel	Mittelungszeitraum	Grenzwert
Menschliche Gesundheit	Kalenderjahr	5 μg/m³

Grenzwert für Kohlenmonoxid gemäß Anhang II der Richtlinie 2000/69/EG

Schutzziel	Mittelungszeitraum	Grenzwert
Menschliche Gesundheit	höchster Achtstundenmittelwert des Tages	10 mg/m³

Richtlinie 2002/3/EG über die Luftverschmutzung durch Ozon

Zielwerte gemäß Anhang I (I)

Gesundheitsschutz	120 μg/m ³	Höchster Achtstundenmittelwert des Tages, darf an höchstens 25 Tagen pro Kalenderjahr überschritten werden, gemittelt über 3 Jahre
Schutz der Vegetation	18.000 μg/m³.h	AOT40, Mai – Juli, 8:00 – 20:00 MEZ
		gemittelt über 5 Jahre

Langfristige Ziele gemäß Anhang I (II)

3 3 3	5 ()	
Gesundheitsschutz	120 μg/m ³	Höchster Achtstundenmittelwert des Kalenderjahres
Schutz der Vegetation	6.000 µg/m³.h	AOT40. Mai – Juli. 8:00 – 20:00 MEZ

Informations- und Alarmschwelle gemäß Anhang II (I)

Informationsschwelle	180 μg/m³	Einstundenmittelwert
Alarmschwelle	240 μg/m³	Einstundenmittelwert

Anhang 2: Glossar und Abkürzungen

	Summe der Differenz zwischen Ozonkonzentrationen über 40 ppb als nicht-gleitender Einstundenmittelwert und 40 ppb (soferne die Ozonkonzentration über 40 ppb liegt) über den Zeitraum Mai – Juli unter Verwendung eines täglichen Zeitfensters von 8:00 bis 20:00.
BR	Ballungsraum (gemäß Messkonzept-VO zum IG-L
CO	Kohlenmonoxid
EU-RL	EU-Richtlinie
IG-L	Immissionsschutzgesetz Luft, BGBl. I Nr. 115/97
	Flüchtige organische Verbindungen ohne Methan (Non-Methane Volatile Organic Compounds)
NO	Stickstoffmonoxid
NO ₂	Stickstoffdioxid
NO_X	Stickstoffoxide (Summe aus NO ₂ und NO)
OÜG	Ozonüberwachungsgebiet
O_3	Ozon
PM10	Particulate Matter kleiner 10 µm
	Bei diesem Messverfahren ist es das Ziel, jenen Anteil am Schwebestaub zu erfassen, der bei gesunden Menschen über den Kehlkopf hinaus in die unteren Atemwegsorgane gelangt.
PM2,5	Particulate Matter kleiner 2,5 µm
	Bei diesem Messverfahren ist es das Ziel, jenen Anteil am Schwebestaub zu erfassen, der bei gesunden Menschen bis in die Lungenbläschen (Alveolen) gelangt.
SO ₂	Schwefeldioxid
TSP	Gesamtschwebestaub (Total Suspended Particulates)
	Bislang in Österreich übliche Messgröße bei der Bestimmung der Schwebestaubbelastung (bei der auch teilweise gröbere Staubfraktionen erfasst werden)
	Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe ($\underline{\text{http://www.emep.int/}}$)
UNECE	United Nations Economic Commission for Europe

74	Jahresbericht der Luftgütemessungen in Österreich 2002
	Line weight and a count/E and and E in the count A man and A countries

Anhang 3: Einheiten und Umrechnungsfaktoren

Alle abgeleiteten Mittelwerte wurden am Umweltbundesamt aus den von den anderen Messnetzbetreibern übermittelten Halbstundenmittelwerten berechnet. Dabei wurden die unten angeführten Umrechnungsfaktoren verwendet.

Einheiten

mg/m³	Milligramm pro Kubikmeter
μg/m³	Mikrogramm pro Kubikmeter
ppb	parts per billion

 $1 \text{ mg/m}^3 = 1000 \mu\text{g/m}^3$

<u>Umrechnungsfaktoren</u> zwischen Mischungsverhältnis, angegeben in ppb, und Konzentration in μg/m³ (außer CO in mg/m³) bei 1013 hPa und 293 K (Normbedingungen)

Schadstoff		
SO ₂	$1 \mu g/m^3 = 0.37528 ppb$	1 ppb = $2,6647 \mu g/m^3$
NO	$1 \mu g/m^3 = 0.80186 ppb$	1 ppb = $1,2471 \mu g/m^3$
NO_2	$1 \mu g/m^3 = 0,52293 ppb$	1 ppb = $1,9123 \mu g/m^3$
CO	$1 \text{ mg/m}^3 = 859,11 \text{ ppb}$	1 ppb = $0,0011640 \text{ mg/m}^3$
Benzol	$1 \mu g/m^3 = 0,308 ppb$	1 ppb = $3,247 \mu g/m^3$
O ₃	$1 \mu g/m^3 = 0,50115 ppb$	1 ppb =1,9954 μg/m³

PM10- und PM2,5-Konzentrationen sind in Betriebsbedingungen angegeben.

76	Jahresbericht der Luftgütemessungen in Österreich 2002

Anhang 4: Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß IG-L bzw. ÖNORM M5866, April 2000)
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4
MW8	gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12
MW8a	nicht gleitender Achtstundenmittelwert (3 Werte pro Tag: 0 - 8 Uhr, 8 - 16 Uhr, 16 - 24 Uhr)	12
MW8b	Achtstundenmittelwert 12 - 20 Uhr	12
TMW	Tagesmittelwert	40
MMW	Monatsmittelwert	75%
JMW	Jahresmittelwert	75% sowohl im Winter- als auch im Sommerhalbjahr
WMW	Wintermittelwert (Oktober – März)	75% in jeder Hälfte der Beurteilungsperiode

78	Jahresbericht der Luftgütemessungen in Österreich 2002

Anhang 5: Verfügbarkeit der Messdaten und Messergebnisse

1 Gesamtschwebestaub

Im Jahr 2002 wurden in Österreich 71 Messstellen gemäß IG-L betrieben, davon 59 mit einer Verfügbarkeit über 90%, 2 mit einer Verfügbarkeit von 75 - 90%; darüber hinaus liegen Daten von 15 weiteren Messstellen vor, davon 8 mit einer Verfügbarkeit über 90%, eine mit 75-90% Verfügbarkeit.

Gesamtschwebestaub: Meldung gemäß IG-L, Verfügbarkeit der gültigen HMW in %, maximaler Tagesmittelwert des Jahres, Jahresmittelwert 2002

Gebiet	Messstelle	IG-L	Verfügbarkeit (%)	JMW	Max. TMW (μg/m³)	Anzahl TMW >150 μg/m³
Burgenland	Eisenstadt	Х	96	35	101	0
Kärnten	Arnoldstein Gailitz	Х	100	20	148	0
Kärnten	Klagenfurt Koschatstr.	Х	94	30	108	0
Kärnten	Klagenfurt Völkermark- terstr.	Х	99	42	147	0
Kärnten	Obervellach		63		54	0
Kärnten	Spittal	Х	97		78	0
Kärnten	St. Andrä	Х	99	36	115	0
Kärnten	St. Georgen	Х	97	20	65	0
Kärnten	St. Veit	Х	96	41	106	0
Kärnten	Villach	Х	99	34	242	1
Kärnten	Wietersdorf	Х	97	26	92	0
Kärnten	Wolfsberg	Х	100	35	122	0
Niederösterreich	Brunn a.G.	Х	25		72	0
Niederösterreich	Deutsch Wagram	Х	16		68	0
Niederösterreich	Fischamend	Х	16		137	0
Niederösterreich	Großenzersdorf	Х	16		123	0
Niederösterreich	Himberg		5		161	1
Niederösterreich	Korneuburg	Х	27		76	0
Niederösterreich	Krems		100	26	70	0
Niederösterreich	Mannswörth	Х	28		67	0
Niederösterreich	Neusiedl i.T.		93	28	90	0
Niederösterreich	St. Pölten		82	24	100	0
Niederösterreich	St. Valentin		97	23	87	0
Niederösterreich	Stockerau		16		64	0
Niederösterreich	Streithofen		95	23	114	0
Niederösterreich	Trasdorf		94	22	94	0
Niederösterreich	Tulln		96	31	87	0
Niederösterreich	Wiener Neustadt		31		76	0
Niederösterreich	Zwentendorf		95	24	101	0
Oberösterreich	Steyr	Х	96	21	76	0
Oberösterreich	Wels	Х	97	24	93	0
BR Linz	Asten	Х	97	26	89	0
BR Linz	Linz 24er Turm	Х	91	33	132	0
BR Linz	Linz Kleinmünchen	Х	96	28	95	0
BR Linz	Linz Neue Welt	X	96	36	100	0

Gebiet	Messstelle	IG-L	Verfügbarkeit (%)	JMW	Max. TMW (μg/m³)	Anzahl TMW >150 μg/m³
BR Linz	Linz ORF-Zentrum	Х	96	47	216	6
BR Linz	Linz Römnerberg	Х	96	36	153	1
BR Linz	Linz Urfahr	Х	89	33	143	0
BR Linz	Steyregg	X	98	29	145	0
BR Linz	Traun	Х	66		89	0
Steiermark	Bockberg	Х	98	23	63	0
Steiermark	Deutschlandsberg	Х	99	30	96	0
Steiermark	Hartberg		10		58	0
Steiermark	Kapfenberg	Х	99	30	209	1
Steiermark	Knittelfeld	Х	94	31	122	0
Steiermark	Leoben Donawitz	Х	55		104	0
Steiermark	Leoben Göss	Х	98	34	211	1
Steiermark	Leoben Zentrum	Х	97	34	247	1
Steiermark	Peggau		10		98	0
Steiermark	Pöls Ost	Х	96	19	207	1
Steiermark	Straßengel	Х	97	27	100	0
Steiermark	Voitsberg Mühlgasse	Х	98	35	132	0
Steiermark	Weiz	X	99	38	152	1
Steiermark	Zeltweg	Х	97	29	98	0
BR Graz	Graz Don Bosco		97	40	154	1
BR Graz	Graz Nord	Х	56		112	0
BR Graz	Graz Süd	X	97	43	176	2
BR Graz	Graz West	Х	98	41	143	0
Tirol	Brixlegg	Х	99	35	158	1
Tirol	Gärberbach	Х	100	28	67	0
Tirol	Hall i.T.	Х	100	35	121	0
Tirol	Imst	Х	95	31	111	0
Tirol	Innsbruck Reichenau	Х	99	37	208	8
Tirol	Innsbruck Zentrum	Х	99	35	161	1
Tirol	Kufstein	X	99	28	106	0
Tirol	Lienz	Х	99	35	170	1
Tirol	Vomp a.d.L.	Х	98	35	116	0
Tirol	Vomp A12	Х	99	33	108	0
Tirol	Wörgl	Х	99	34	120	0
Vorarlberg	Bludenz	Х	97	28	111	0
Vorarlberg	Lustenau	Х	90	23	101	0
Wien	Belgradpl.	Х	100	37	115	0
Wien	Floridsdorf	Х	99	31	88	0
Wien	Gaudenzdorf	Х	76	38	103	0
Wien	Hermannskogel	х	100	20	60	0
Wien	Hohe Warte	X	99	28	81	0
Wien	Kaiserebersdorf	х	99	33	88	0
Wien	Kendlerstr.	Х	99	38	157	1

Gebiet	Messstelle	IG-L	Verfügbarkeit (%)	JMW	Max. TMW (μg/m³)	Anzahl TMW >150 μg/m³
Wien	Laaerberg	Х	99	35	102	0
Wien	Lobau	Х	98	24	63	0
Wien	Rinnböckstr.	X	99	40	119	0
Wien	Schafbergbad	Х	99	25	78	0
Wien	Stadlau	Х	100	31	126	0
Wien	Stephansplatz	Х	199	26	71	0
Wien	Taborstr.	Х	96	44	132	0
Wien	Währinger Gürtel	Х	100	31	96	0

2 PM10

Im Jahr 2002 wurden insgesamt 78 PM10-Messstellen, davon 66 gemäß IG-L betrieben. An 17 Messstellen wurde die PM10-Konzentration mittels Gravimetrie bestimmt, an 70 Messstellen mittels kontinuierlicher Messverfahren (β-Absorption oder TEOM); an 9 Messstellen erfolgt die PM10-Messung parallel durch Gravimetrie und kontinuierliche Messung. Bei jenen Messstellen, an denen beide Messmethoden zur Anwendung kommen, werden die gravimetrischen Daten zur Beurteilung der PM10-Belastung gemäß IG-L herangezogen.

Von den 66 IG-L-Messstellen wiesen 55 eine Verfügbarkeit über 90%, 8 eine Verfügbarkeit von 75 – 90% auf. Darüber hinaus stehen Daten von weiteren 12 Messstellen zur Verfügung, davon 2 mit über 90% Verfügbarkeit und 2 mit Verfügbarkeit zwischen 75 und 90%.

Die folgende Tabelle gibt das Messziel (IG-L), die Messmethode, die Verfügbarkeit der TMW, den maximalen TMW, die Anzahl der TMW über 50 μg/m³ und den JMW für das Jahr 2002 an.

PM10: Meldung gemäß IG-L, Messmethode (g: gravimetrisch, β: β-Absorption, T: TEOM), Verfügbarkeit der gültigen TMW in %, maximaler Tagesmittelwert des Jahres, Anzahl der TMW über 50 μg/m³ im Kalenderjahr 2002, Jahresmittelwert 2002.

Gebiet	Messstelle	IG-L	Methode	Standortfaktor	Verfügbarkeit (%)	max TMW (μg/m³)	TMW > 50 μg/m ³	Jahresmittelwert
Burgenland	Eisenstadt	Х	ß	1,30	94	84,4	39	29,4
Burgenland	Illmitz	Х	g		98	104,2	45	29,1
Burgenland	Kittsee	Х	ß	1,30	97	86,9	53	30,8
Burgenland	Oberwart	Х	ß	1,30	97	84,5	25	25,2
Kärnten	Arnoldstein Kugi	Х	g		90	112,9	5	18,7
Kärnten	Klagenfurt Völkemarkster.	Х	g		98	127,4	58	36,8
Kärnten	Villach	Х	g		98	148,6	24	28,6
Kärnten	Vorhegg	Х	g		93	48,0	0	11,2
Kärnten	Wolfsberg		g		66	80,4	18	
Niederösterreich	Amstetten	Х	Т	1,30	83	135,2	42	33,0
Niederösterreich	Biedermannsdorf		Т	1,30	74	83,2	24	
Niederösterreich	Brunn a.G.		Т	1,30	75	79,3	20	26,4
Niederösterreich	Forsthof	Х	T	1,30	98	152,1	20	22,7

Gebiet	Messstelle	IG-L	Methode	Standortfaktor	Verfügbarkeit (%)	max TMW (μg/m³)	TMW > 50 μg/m ³	Jahresmittelwert
Niederösterreich	Großenzersdorf		Т	1,30	79	85,8	34	32,0
Niederösterreich	Hainburg	Х	T	1,30	98	83,2	63	32,8
Niederösterreich	Heidenreichstein	Х	Т	1,30	100	68,9	23	26,0
Niederösterreich	Himberg	X	T	1,30	91	89,7	52	33,1
Niederösterreich	Klosterneuburg	Х	Т	1,30	98	89,7	61	32,7
Niederösterreich	Mannswörth		T	1,30	70	126,1	51	
Niederösterreich	Mistelbach	Х	Т	1,30	88	101,4	44	32,1
Niederösterreich	Mödling	Х	T	1,30	100	93,6	48	29,8
Niederösterreich	Schwechat	Х	Т	1,30	100	83,2	69	34,8
Niederösterreich	St. Pölten	Х	Т	1,30	17	223,6	9	
Niederösterreich	Stixneusiedl	Х	Т	1,30	100	89,7	60	32,8
Niederösterreich	Stockerau	Х	Т	1,30	77	81,9	32	32,1
Niederösterreich	Vösendorf	Х	Т	1,30	100	88,4	69	34,5
Niederösterreich	Wiener Neustadt	Х	Т	1,30	66	76,7	13	
Oberösterreich	Bad Ischl	Х	ß	1,19	96	91,0	13	19,4
Oberösterreich	Braunau	Х	T	1,16	81	64,0	6	21,7
Oberösterreich	Grünbach	Х	Т	1,19	98	192,0	4	18,2
Oberösterreich	Lenzing	Х	T	1,19	97	74,0	14	20,5
Oberösterreich	St. Peter		g, T	1,19	49	77,1	11	
Oberösterreich	Steyr	Х	Т	1,18	99	78,0	23	23,8
Oberösterreich	Vöcklabruck	Х	Т	1,19	99	75,0	12	21,9
Oberösterreich	Wels	Х	Т	1,16	99	83,1	12	28,9
BG Linz	Linz 24er Turm	Х	Т	1,16	95	116,0	52	31,8
BG Linz	Linz Freinberg	Х	ß	1,18	98	104,0	27	25,3
BG Linz	Linz Neue Welt	Х	g, T	1,16	97	107,1	56	33,6
BG Linz	Linz ORF-Zentrum	Х	g, T	1,09	99	143,1	64	35,0
BG Linz	Linz Römerberg	Х	Т	1,16	93	135,0	65	36,4

Gebiet	Messstelle	IG-L	Methode	Standortfaktor	Verfügbarkeit (%)	max TMW (µg/m³)	TMW > 50 μg/m ³	Jahresmittelwert
BG Linz	Steyregg	Х	g, T	1,18	98	123,4	42	29,3
BG Linz	Traun	Х	Т	1,18	99	88,0	33	26,8
Salzburg	Hallein Hagerkreuzung	Х	g, ß	1,00	100	108,7	28	28,1
Salzburg	Salzburg Lehen	Х	ß	1,00	86	95,0	18	21,8
Salzburg	Salzburg Mirabellplatz		ß	1,00	98	85,1	11	19,5
Salzburg	Salzburg Rudolfsplatz	Х	g, ß	1,00	98	92,8	34	32,1
Salzburg	St. Koloman	Х	g		100	78,8	4	12,1
Salzburg	Tamsweg	Х	ß	1,00	95	94,6	13	21,4
Salzburg	Zederhaus	Х	g, ß	1,00	96	138,8	3	17,8
Steiermark	Bruck a.d.M.	Х	Т	1,30	97	202,8	52	32,2
Steiermark	Gratwein	Χ	Т	1,30	94	99,7	36	30,9
Steiermark	Hartberg	Х	Т	1,30	88	119,2	59	36,6
Steiermark	Köflach	Х	T	1,30	95	153,6	85	40,2
Steiermark	Leoben Donawitz		Т	1,30	43	184,9	7	
Steiermark	Liezen	Х	T	1,30	95	301,3	32	29,3
Steiermark	Masenberg	Х	Т	1,30	99	59,7	3	16,6
Steiermark	Niklasdorf		ß	1,30	22	207,9	10	
Steiermark	Peggau	Х	ß	1,30	87	118,1	38	34,1
BG Graz	Graz Don Bosco	Х	ß	1,30	95	228,8	131	50,9
BG Graz	Graz Mitte	Х	Т	1,30	95	154,3	99	43,9
BG Graz	Graz Nord		T	1,30	38	91,7	27	
BG Graz	Graz Ost	Х	Т	1,30	97	117,4	72	36,7
Tirol	Brixlegg	Х	ß	1,30	99	131,6	41	29,4
Tirol	Gärberbach	Х	ß	1,30	100	55,8	7	22,9
Tirol	Hall i.T.	Х	ß	1,30	100	100,9	45	28,9
Tirol	Imst	Х	ß	1,30	95	92,6	23	25,4
Tirol	Innsbruck Reichenau	х	ß	1,30	99	173,0	50	30,7

Gebiet	Messstelle	IG-L	Methode	Standortfaktor	Verfügbarkeit (%)	max TMW (µg/m³)	TMW > 50 μg/m³	Jahresmittelwert
Tirol	Innsbruck Zentrum	Х	ß	1,30	99	134,1	40	28,8
Tirol	Kufstein	X	ß	1,30	99	88,0	21	23,5
Tirol	Lienz	Х	ß	1,30	99	141,3	37	29,3
Tirol	Vomp a.d.L.	X	ß	1,30	98	96,5	37	28,9
Tirol	Vomp A12	Х	ß	1,30	99	90,2	29	27,1
Tirol	Wörgl	Х	ß	1,30	99	100,2	42	28,2
Vorarlberg	Dornbirn	Х	ß	1,30	88	50,3	0	13,8
Vorarlberg	Feldkirch	Х	g		74	241,0	63	38,0
Wien	Erdberg		g		37	107,6	55	
Wien	Liesing	Х	g		100	92,0	57	31,2
Wien	Schafbergbad		g		99	76,0	28	23,1

3 Schwefeldioxid

Im Jahr 2002 wurde die SO₂-Konzentration an 121 Messstellen gemäß IG-L gemessen; 16 von diesen Messstellen wurden zudem zur Überwachung der Grenzwerte zum Schutz der Ökosysteme betrieben. Darüber hinaus liegen Messdaten von 17 weiteren SO₂-Messstellen vor. 113 der 121 gemäß IG-L betriebenen Messstellen wiesen eine Verfügbarkeit über 90% auf, vier zwischen 75 und 90% sowie 4 unter 75%. Von den übrigen Messstellen wiesen 16 eine Verfügbarkeit über 90%, eine zwischen 75 und 90% sowie eine Verfügbarkeit unter 75% auf.

Die Verfügbarkeit der HMW, der maximale HMW und der maximale TMW des Jahres, der Jahresmittelwert 2002 und der Wintermittelwert 2001/2002 sind in der folgenden Tabelle angegeben.

Schwefeldioxid: Messziel: IG-L: Schutz des Menschen, ÖV: Schutz der Ökosysteme und Vegetation, Verfügbarkeit der gültigen HMW in %, maximaler Halbstundenmittelwert und maximaler Tagesmittelwert des Jahres, Jahresmittelwert 2002, Wintermittelwert 2001/2002.

Gebiet	Messstelle		Verfügbar- keit (%)	max HMW (µg/m³)	max TMW (µg/m³)	JMW (µg/m³)	WMW (µg/m³)
В	Eisenstadt	IG-L	94	57	22	4	4
В	Illmitz	IG-L, ÖV	96	45	24	3	4
В	Kittsee	IG-L	96	162	59	7	10
В	Oberwart	IG-L	97	44	16	2	4
K	Arnoldstein Gailitz	IG-L	98	113	23	6	7
K	Arnoldstein Hohenthurn		97	208	34	8	11
K	Arnoldstein Waldsiedlung		92	102	19	6	7
K	Bleiburg	IG-L	98	76	35	5	5
K	Klagenfurt Koschatstr.	IG-L	98	155	27	7	10
K	Klagenfurt Völkermarkterstr.	IG-L	13	101	26		12
K	Obervellach	IG-L, ÖV	98	46	17	4	8
K	Soboth	IG-L	96	65	22	4	4
K	Spittal		51	53	36		12
K	St. Andrä	IG-L	96	111	19	4	6
K	St. Georgen	IG-L, ÖV	96	164	30	4	4
K	Villach	IG-L	97	50	24	4	8
K	Vorhegg	IG-L, ÖV	95	20	6	1	1
K	Wietersdorf	IG-L	96	155	23	4	5
K	Wolfsberg	IG-L	98	66	27	7	10
N	Amstetten	IG-L	95	24	14	4	5
N	Brunn a.G.	IG-L	93	49	26	8	8
N	Deutsch Wagram	IG-L	48	87	24		9
N	Dunkelsteinerwald	IG-L	98	74	28	5	6
N	Fischamend	IG-L	52	47	22		7
N	Forsthof	IG-L, ÖV	96	49	17	5	6
N	Gänserndorf	IG-L	99	145	45	10	13
N	Großenzersdorf	IG-L	95	160	22	5	7
N	Hainburg	IG-L	96	176	74	10	12

Gebiet	Messstelle	Messziel	Verfügbar- keit (%)	max HMW (μg/m³)	max TMW (μg/m³)	JMW (μg/m³)	WMW (μg/m³)
N	Heidenreichstein	IG-L, ÖV	99	41	24	6	6
N	Irnfritz	IG-L	93	70	31	7	7
N	Klosterneuburg	IG-L	98	110	34	7	7
N	Kollmitzberg	IG-L	76	56	15	4	6
N	Krems	IG-L	94	78	31	8	7
N	Mannswörth	IG-L	93	52	26	9	11
N	Mistelbach	IG-L	84	74	36	8	
N	Mödling	IG-L	44	67	20		7
N	Neusiedl i.T.		90	57	19	5	5
N	Payerbach	IG-L	98	51	18	10	10
N	Pillersdorf	IG-L, ÖV	97	79	34	3	4
N	Pöchlarn		96	79	19	5	6
N	Schwechat	IG-L	92	164	41	11	10
N	St. Pölten	IG-L	92	312	79	13	14
N	Stixneusiedl	IG-L	97	138	43	9	9
N	Stockerau	IG-L	98	99	36	7	9
N	Streithofen		92	56	16	4	6
N	Trasdorf		85	71	32	8	6
N	Tulbinger Kogel		94	72	37	14	11
N	Tulln		95	73	28	5	4
N	Vösendorf	IG-L	97	37	15	3	3
N	Waidhofen		92	23	10	4	4
N	Wiener Neustadt	IG-L	98	41	26	9	8
N	Wolkersdorf	IG-L	98	93	51	9	10
N	Zwentendorf		92	74	30	8	8
0	Bad Ischl	IG-L	98	24	12	3	3
0	Braunau	IG-L	98	32	13	3	5
0	Enzenkirchen	IG-L, ÖV	96	27	12	2	2
0	Grünbach	IG-L, ÖV	93	28	8	1	1
0	Lenzing	IG-L	92	223	45	7	7
0	Schöneben	IG-L, ÖV	85	35	16	4	4
0	Steyr	IG-L	96	23	16	4	4
0	Vöcklabruck	IG-L	97	85	18	4	5
0	Wels	IG-L	90	46	19	4	7
0	Zöbelboden	IG-L, ÖV	93	15	5	1	1
O-L	Asten	IG-L	97	40	13	2	3
O-L	Linz 24er Turm	IG-L	81	73	16	4	4
O-L	Linz Kleinmünchen	IG-L	98	68	16	4	6
O-L	Linz Neue Welt	IG-L	96	195	29	4	4
O-L	Linz ORF-Zentrum	IG-L	96	195	34	6	7
O-L	Linz Römerberg	IG-L	93	150	28	5	7
O-L	Linz Urfahr	IG-L	97	94	17	5	5

Gebiet	Messstelle	Messziel	Verfügbar- keit (%)	max HMW (μg/m³)	max TMW (μg/m³)	JMW (µg/m³)	WMW (µg/m³)
O-L	Steyregg	IG-L	97	125	20	5	6
O-L	Traun	IG-L	97	40	16	4	4
S	Hallein Hagerkreuzung	IG-L	99	113	26	6	7
S	Hallein Winterstall		98	97	16	3	4
S	Haunsburg	IG-L, ÖV	95	14	6	2	2
S	Salzburg Lehen		99	55	18	6	8
S	Salzburg Mirabellplatz		99	65	19	5	8
S	Salzburg Rudolfsplatz	IG-L	97	32	18	6	8
S	St. Koloman	IG-L, ÖV	96	13	6	1	1
S	Tamsweg	IG-L	96	35	10	3	4
S	Zederhaus	IG-L	100	21	8	3	4
St	Arnfels	IG-L	98	433	74	6	8
St	Bockberg		96	89	18	3	5
St	Bruck a.d.M.	IG-L	97	57	21	4	7
St	Deutschlandsberg	IG-L	97	41	16	4	6
St	Gratwein	IG-L	89	73	13	3	4
St	Grundlsee	IG-L	98	8	7	3	2
St	Hartberg	IG-L	97	69	15	3	5
St	Hochgössnitz	IG-L	97	135	20	3	5
St	Judendorf Süd	IG-L	96	116	36	7	11
St	Kapfenberg	IG-L	98	35	10	4	6
St	Klöch	IG-L	98	126	33	4	6
St	Knittelfeld	IG-L	93	46	17	4	
St	Köflach	IG-L	97	450	34	7	11
St	Leoben Donawitz	IG-L	96	209	28	5	10
St	Leoben Göss	IG-L	96	103	16	4	7
St	Leoben Zentrum	IG-L	97	120	19	5	7
St	Liezen	IG-L	91	52	20	4	7
St	Masenberg	IG-L	98	81	18	3	2
St	Peggau	IG-L	97	28	17	3	4
St	Piber		94	303	27	3	2
St	Pöls		97	42	9	3	3
St	Reiterberg	IG-L	95	56	9	1	1
St	Rennfeld	IG-L	98	46	14	2	1
St	Stolzalpe	IG-L, ÖV	96	14	6	0	1
St	Straßengel	IG-L	98	362	89	19	22
St	Voitsberg Krems	IG-L	93	71	28	4	
St	Voitsberg Mühlgasse	IG-L	97	73	24	6	9
St	Weiz	IG-L	95	28	13	3	5
St-G	Graz Don Bosco	IG-L	92	98	46	11	18
St-G	Graz Nord	IG-L	95	75	28	5	9
St-G	Graz Süd	IG-L	96	56	30	6	10

Gebiet	Messstelle	Messziel	Verfügbar- keit (%)	max HMW (μg/m³)	max TMW (μg/m³)	JMW (µg/m³)	WMW (µg/m³)
St-G	Graz West	IG-L	96	53	31	5	10
Т	Brixlegg	IG-L	97	236	25	5	5
Т	Innsbruck Zentrum	IG-L	98	74	36	6	13
Т	Kufstein	IG-L	95	21	14	3	5
Т	Lienz	IG-L	95	44	22	5	10
Т	St. Sigmund	IG-L, ÖV	94	49	2	0	0
V	Bludenz	IG-L	96	49	26	5	7
V	Dornbirn	IG-L	96	57	14	3	5
V	Sulzberg	IG-L, ÖV	98	6	3	1	1
W	Belgradpl.	IG-L	100	86	25	5	6
W	Floridsdorf	IG-L	100	99	35	6	6
W	Gaudenzdorf	IG-L	100	91	29	6	8
W	Hermannskogel	IG-L	100	103	34	5	5
W	Hietzinger Kai	IG-L	100	58	25	6	7
W	Hohe Warte	IG-L	100	108	35	5	7
W	Kaiserebersdorf	IG-L	100	191	60	8	8
W	Kendlerstr.	IG-L	100	93	29	6	6
W	Laaerberg	IG-L	100	88	26	6	7
W	Liesing	IG-L	99	83	21	4	5
W	Lobau	IG-L	100	94	29	4	5
W	Rinnböckstr.	IG-L	100	83	29	5	7
W	Schafbergbad	IG-L	100	86	33	5	5
W	Stadlau	IG-L	100	107	29	6	7
W	Stephansplatz	IG-L	100	182	33	5	6
W	Taborstr.	IG-L	100	100	34	7	9
W	Währinger Gürtel	IG-L	100	97	38	5	6

90	Jahresbericht der Luftgütemessungen in Österreich 2002

4 Stickstoffoxide

Im Jahr 2002 wurde die NO₂- bzw. NO_X-Konzentration an 138 Messstellen gemäß IG-L gemessen; 15 von diesen Messstellen wurden zudem zur Überwachung der Grenzwerte zum Schutz der Vegetation betrieben. Darüber hinaus liegen Messdaten von 9 weiteren NO₂-Messstellen vor. Von den 138 gemäß IG-L betriebenen Messstellen wiesen 131 eine Verfügbarkeit über 90%, drei zwischen 75 und 90% sowie vier unter 75% auf, von den darüber hinaus betriebenen Messstellen besitzen sieben eine Verfügbarkeit über 90% sowie jeweils eine zwischen 75 und 90% bzw. unter 75%.

Die folgende Tabelle gibt alle NO_X -Messstellen mit Messziel, Verfügbarkeit der HMW, maximalen HMW, Anzahl der Tage mit HMW über 200 μ g/m³, maximalem TMW, Anzahl der TMW über 80 μ g/m³ sowie JMW von NO_2 , NO und NO_X (berechnet als NO_2) in μ g/m³ an.

Stickstoffdioxid: Messziel: IG-L: Schutz des Menschen; ÖV: Schutz der Ökosysteme und Vegetation, Verfügbarkeit der gültigen HMW in %, maximaler Halbstundenmittelwert des Jahres, Grenzwertüberschreitungen gemäss IG-L, maximaler Tagesmittelwert des Jahres, Zielwertüberschreitungen gemäß IG-L, Jahresmittelwerte von NO₂, NO und NO_x, 2002 (µg/m³)

Gebiet	Messstelle	Messziel	Verfügbarkeit (%)	Max. HMW (μg/m³)	Max. TMW (μg/m³)	NO ₂ JMW (μg/m³)	NO JMW (μg/m³)	NO _X JMW (μgNO ₂ /m³)
Burgenland	Eisenstadt	IG-L	85	113	47	19	11	36
Burgenland	Illmitz	IG-L, ÖV	96	47	35	9	1	10
Burgenland	Kittsee	IG-L	91	93	58	15	3	20
Burgenland	Oberwart	IG-L	92	115	39	10	4	16
Kärnten	Arnoldstein Gailitz	IG-L	97	110	63	18	6	27
Kärnten	Klagenfurt Koschatstr.	IG-L	98	156	88	32	21	64
Kärnten	Klagenfurt Völkermarkterstr.	IG-L	97	166	96	38	51	116
Kärnten	Obervellach	IG-L, ÖV	98	138	38	11	6	19
Kärnten	Soboth	IG-L	96	79	21	4	1	6
Kärnten	Spittal	IG-L	97	99	57	24	16	48
Kärnten	St. Andrä	IG-L	96	102	68	28	29	72
Kärnten	St. Georgen	IG-L, ÖV	96	89	58	12	4	18
Kärnten	St. Veit	IG-L	98	96	47	22	28	66
Kärnten	Villach	IG-L	97	145	76	31	35	85

Gebiet	Messstelle	Messziel	Verfügbarkeit (%)	Max. HMW (μg/m³)	Max. TMW (μg/m³)	NO ₂ JMW (μg/m³)	NO JMW (μg/m³)	NO _χ JMW (μgNO ₂ /m³)
Kärnten	Vorhegg	IG-L, ÖV	97	31	22	3	0	4
Kärnten	Wietersdorf	IG-L	95	104	36	15	21	48
Kärnten	Wolfsberg	IG-L	97	103	63	28	32	77
Niederösterreich	Amstetten	IG-L	94	99	80	27	11	43
Niederösterreich	Bad Vöslau	IG-L	99	80	53	16	6	24
Niederösterreich	Biedermannsdorf		96	99	55	17	11	34
Niederösterreich	Brunn a.G.	IG-L	86	149	77	24	10	40
Niederösterreich	Deutsch Wagram	IG-L	49	86	62			
Niederösterreich	Dunkelsteinerwald	IG-L	95	63	49	11	2	15
Niederösterreich	Fischamend	IG-L	67	121	54			
Niederösterreich	Forsthof	IG-L, ÖV	98	77	34	9	2	12
Niederösterreich	Gänserndorf	IG-L	96	94	61	15	3	20
Niederösterreich	Großenzersdorf	IG-L	100	92	54	18	5	26
Niederösterreich	Hainburg	IG-L	93	84	52	16	3	21
Niederösterreich	Heidenreichstein	IG-L, ÖV	99	48	27	8	2	10
Niederösterreich	Himberg		15	71	45			
Niederösterreich	Klosterneuburg	IG-L	96	251	77	22	6	32
Niederösterreich	Kollmitzberg	IG-L	97	84	67	13	2	16
Niederösterreich	Korneuburg	IG-L	45	115	62			
Niederösterreich	Krems	IG-L	96	180	51	22	8	34
Niederösterreich	Mannswörth	IG-L	10	90	53			
Niederösterreich	Mödling	IG-L	97	126	72	22	7	33
Niederösterreich	Neusiedl i.T.		90	73	58	14	4	20
Niederösterreich	Payerbach	IG-L	97	61	38	7	2	10
Niederösterreich	Pillersdorf	IG-L, ÖV	97	54	41	9	1	11
Niederösterreich	Pöchlarn	IG-L	90	94	69	19	6	29
Niederösterreich	Schwechat	IG-L	94	119	59	20	8	32

Gebiet	Messstelle	Messziel	Verfügbarkeit (%)	Max. HMW (μg/m³)	Max. TMW (μg/m³)	NO ₂ JMW (µg/m³)	NO JMW (μg/m³)	NO _χ JMW (μgNO ₂ /m³)
Niederösterreich	St. Pölten	IG-L	96	103	56	23	7	34
Niederösterreich	St. Valentin	IG-L	93	101	83	19	10	35
Niederösterreich	Stixneusiedl	IG-L	90	80	52	14	3	19
Niederösterreich	Stockerau	IG-L	96	111	63	24	7	35
Niederösterreich	Streithofen		92	84	58	13	3	17
Niederösterreich	Trasdorf		85	86	56	13	3	18
Niederösterreich	Tulbinger Kogel		94	115	46	10	3	14
Niederösterreich	Tulln		95	170	67	27	15	49
Niederösterreich	Vösendorf	IG-L	97	121	78	33	12	52
Niederösterreich	Waidhofen	IG-L	96	90	44	9	3	13
Niederösterreich	Wiener Neustadt	IG-L	95	138	57	21	7	31
Niederösterreich	Wolkersdorf	IG-L	96	84	58	15	3	19
Niederösterreich	Zwentendorf		92	115	57	13	3	18
Oberösterreich	Bad Ischl	IG-L	92	83	56	19	8	32
Oberösterreich	Braunau	IG-L	90	119	58	19	8	32
Oberösterreich	Enzenkirchen	IG-L, ÖV	96	84	60	11	2	14
Oberösterreich	Grünbach	IG-L, ÖV	92	71	22	6	2	9
Oberösterreich	Lenzing	IG-L	97	91	51	15	6	24
Oberösterreich	Steyr	IG-L	93	103	59	20	8	33
Oberösterreich	Wels	IG-L	95	142	75	31	22	65
Oberösterreich	Zöbelboden	IG-L, ÖV	94	45	24	4	0	5
BG Linz	Asten	IG-L	97	115	78	26	21	58
BG Linz	Linz 24er Turm	IG-L	93	127	79	33	33	84
BG Linz	Linz Freinberg	IG-L	98	119	80	22	10	38
BG Linz	Linz Kleinmünchen	IG-L	96	96	81	29	21	61
BG Linz	Linz Neue Welt	IG-L	96	119	83	34	27	75
BG Linz	Linz ORF-Zentrum	IG-L	96	136	81	34	25	72

Gebiet	Messstelle	Messziel	Verfügbarkeit (%)	Max. HMW (μg/m³)	Max. TMW (μg/m³)	NO ₂ JMW (µg/m³)	NO JMW (µg/m³)	NO _χ JMW (μgNO ₂ /m³)
BG Linz	Linz Römerberg	IG-L	94	174	91	43	54	125
BG Linz	Linz Urfahr	IG-L	96	135	87	32	33	83
BG Linz	Steyregg	IG-L	92	117	80	23	10	38
BG Linz	Traun	IG-L	97	116	77	27	19	56
Salzburg	Hallein Hagerkreuzung	IG-L	97	208	135	46	71	155
Salzburg	Haunsberg	IG-L, ÖV	91	73	38	8	2	11
Salzburg	Salzburg Lehen	IG-L	99	251	139	33	22	68
Salzburg	Salzburg Mirabellplatz	IG-L	99	231	138	36	23	71
Salzburg	Salzburg Rudolfsplatz	IG-L	96	205	111	56	78	176
Salzburg	St. Koloman	IG-L, ÖV	98	76	30	6	1	7
Salzburg	Tamsweg	IG-L	92	109	51	14	10	30
Salzburg	Zederhaus	IG-L	98	122	89	33	44	100
Steiermark	Bockberg	IG-L	96	122	50	14	3	18
Steiermark	Bruck a.d.M.	IG-L	97	88	52	19	16	44
Steiermark	Deutschlandsberg	IG-L	97	94	60	18	8	30
Steiermark	Gratwein	IG-L	95	81	54	17	11	34
Steiermark	Hartberg	IG-L	98	118	54	17	11	34
Steiermark	Hochgössnitz	IG-L	96	72	46	6	1	7
Steiermark	Judenburg	IG-L	94	74	47	15	8	28
Steiermark	Judendorf Süd	IG-L	98	121	63	26	16	50
Steiermark	Kapfenberg	IG-L	97	94	60	17	15	40
Steiermark	Knittelfeld	IG-L	94	105	59	21	15	44
Steiermark	Köflach	IG-L	97	112	56	24	18	51
Steiermark	Leoben Donawitz	IG-L	97	82	56	17	12	36
Steiermark	Leoben Göss	IG-L	97	115	60	30	42	95
Steiermark	Leoben Zentrum	IG-L	97	95	63	24	15	46
Steiermark	Liezen	IG-L	91	106	74	18	15	40

Gebiet	Messstelle	Messziel	Verfügbarkeit (%)	Max. HMW (μg/m³)	Max. TMW (μg/m³)	NO ₂ JMW (μg/m³)	NO JMW (µg/m³)	NO _χ JMW (μgNO ₂ /m³)
Steiermark	Masenberg	IG-L	95	37	15	2	0	3
Steiermark	Peggau	IG-L	98	101	67	27	16	52
Steiermark	Piber	IG-L	93	73	55	10	3	14
Steiermark	Pöls		98	65	44	12	3	16
Steiermark	Stolzalpe	IG-L, ÖV	97	36	15	3	0	3
Steiermark	Straßengel	IG-L	98	123	66	25	13	45
Steiermark	Voitsberg Krems	IG-L	87	88	42	21	17	47
Steiermark	Voitsberg Mühlg	IG-L	97	109	54	20	20	50
Steiermark	Weiz	IG-L	96	131	64	24	14	45
Steiermark	Zeltweg	IG-L	96	97	61	20	14	42
BG Graz	Graz Don Bosco	IG-L	94	190	108	45	74	159
BG Graz	Graz Mitte	IG-L	97	211	101	43	42	107
BG Graz	Graz Nord	IG-L	95	129	77	27	17	54
BG Graz	Graz Ost	IG-L	98	161	78	26	19	56
BG Graz	Graz Süd	IG-L	97	191	116	32	40	94
BG Graz	Graz West	IG-L	98	126	75	30	26	70
Tirol	Gärberbach	IG-L	97	129	69	41	68	145
Tirol	Hall i.T.	IG-L	98	154	98	41	67	144
Tirol	Imst	IG-L	94	185	87	30	40	90
Tirol	Innsbruck Reichenau	IG-L	95	145	93	36	43	102
Tirol	Innsbruck Zentrum	IG-L	97	174	96	40	42	104
Tirol	Kramsach	IG-L	98	111	78	24	16	49
Tirol	Kufstein	IG-L	97	115	88	31	26	71
Tirol	Lienz	IG-L	97	176	76	34	63	131
Tirol	Nordkette	IG-L	98	59	19	3	1	5
Tirol	St. Sigmund	IG-L, ÖV	97	34	14	2	0	3
Tirol	Vomp A12	IG-L	98	182	113	61	182	340

Gebiet	Messstelle	Messziel	Verfügbarkeit (%)	Max. HMW (μg/m³)	Max. TMW (μg/m³)	NO ₂ JMW (µg/m³)	NO JMW (μg/m³)	NO _χ JMW (μgNO ₂ /m³)
Tirol	Vomp an der Leiten	IG-L	96	158	101	43	75	158
Tirol	Wörgl	IG-L	96	122	64	28	34	80
Vorarlberg	Bludenz	IG-L	92	142	92	27	18	55
Vorarlberg	Dornbirn	IG-L	93	163	116	33	27	74
Vorarlberg	Feldkirch	IG-L	92	178	114	46	70	154
Vorarlberg	Lustenau	IG-L	96	136	109	26	10	41
Vorarlberg	Sulzberg	IG-L, ÖV	98	108	26	5	1	6
Vorarlberg	Wald a.A.	IG-L	97	130	68	28	26	68
Wien	Belgradpl.	IG-L	100	147	85	37	19	66
Wien	Floridsdorf	IG-L	100	162	69	33	13	53
Wien	Gaudenzdorf	IG-L	100	167	83	35	17	61
Wien	Hermannskogel	IG-L	100	97	73	15	2	17
Wien	Hietzinger Kai	IG-L	100	195	120	57	125	249
Wien	Hohe Warte	IG-L	100	162	68	24	9	38
Wien	Kaiserebersdorf	IG-L	100	166	68	31	14	52
Wien	Kendlerstr.	IG-L	100	150	80	31	18	58
Wien	Laaerberg	IG-L	100	138	71	29	13	49
Wien	Liesing	IG-L	99	156	77	29	20	59
Wien	Lobau	IG-L	100	116	53	15	3	20
Wien	Rinnböckstr.	IG-L	100	157	86	45	28	89
Wien	Schafbergbad	IG-L	100	129	80	20	5	28
Wien	Stadlau	IG-L	100	154	67	28	11	45
Wien	Stephansplatz	IG-L	100	145	73	31	11	48
Wien	Taborstr.	IG-L	99	166	91	43	31	90
Wien	Währinger Gürtel	IG-L	99	144	74	32	12	50

5 Kohlenstoffmonoxid

Im Jahr 2002 wurden in Österreich 44 Messstellen gemäß IG-L betrieben, davon wiesen 42 eine Verfügbarkeit über 90% auf, je eine zwischen 75 und 90% sowie unter 75%. An vier weiteren Messstellen wurde CO gemessen, von diesen wiesen je zwei eine Verfügbarkeit über 90% sowie unter 75% auf.

Kohlenmonoxid: Meldung gemäß IG-L, Verfügbarkeit der gültigen HMW in %, maximaler Achtstundenmittelwert des Jahres, Jahresmittelwert 2002

Gebiet	Messstelle	IG-L	Verfügbarkeit (%)	Max. MW8 (mg/m³)	JMW (mg/m³)
Burgenland	Eisenstadt	Х	94	1,9	0,4
Burgenland	Illmitz	X	97	0,8	0,3
Kärnten	Arnoldstein Gailitz	Х	98	1,6	0,5
Kärnten	Klagenfurt Koschatstr.	X	97	3,3	0,5
Kärnten	Klagenfurt Völkermarkterstr.	Х	98	4,8	0,7
Kärnten	Obervellach		60	1,2	
Kärnten	Villach	Х	97	4,1	0,6
Kärnten	Vorhegg	X	97	0,7	0,2
Kärnten	Wolfsberg	Х	97	3,4	0,7
Niederösterreich	Brunn a.G.	Х	100	1,8	0,5
Niederösterreich	Mödling	Х	100	1,7	0,4
Niederösterreich	Schwechat		94	1,2	0,3
Niederösterreich	St. Pölten		95	1,4	0,4
Niederösterreich	Stockerau		48	1,8	
Niederösterreich	Vösendorf	Х	92	1,8	0,4
Oberösterreich	Braunau	Х	99	1,6	0,3
Oberösterreich	Steyr	Х	87	2,2	0,5
Oberösterreich	Wels	Х	98	3,3	0,5
BG Linz	Asten	Х	94	2,1	0,4
BG Linz	Linz 24er Turm	Х	98	2,3	0,5
BG Linz	Linz Kleinmünchen	Х	95	2,3	0,5
BG Linz	Linz Neue Welt	Х	98	3,5	0,6
BG Linz	Linz ORF-Zentrum	Х	98	3,4	0,5
BG Linz	Linz Römerberg	Х	98	3,3	0,7
BG Linz	Linz Urfahr	Х	98	3,8	0,7
BG Linz	Steyregg	Х	98	2,3	0,4
BG Linz	Traun	Х	99	2,8	0,5
Salzburg	Hallein Hagerkreuzung	Х	99	4,0	0,7
Salzburg	Salzburg Mirabellplatz	X	99	6,2	0,5
Salzburg	Salzburg Rudolfsplatz	Х	97	3,8	0,9
Salzburg	Sonnblick	X	41	0,4	
Salzburg	St. Koloman	X	98	0,9	0,2
Salzburg	Tamsweg	X	98	2,8	0,5
Salzburg	Zederhaus	Х	100	2,0	0,4
Steiermark	Leoben Donawitz	Х	96	5,5	0,8
BG Graz	Graz Don Bosco	Х	93	4,8	0,8

Gebiet	Messstelle	IG-L	Verfügbarkeit (%)	Max. MW8 (mg/m³)	JMW (mg/m³)
BG Graz	Graz Mitte	Х	95	4,0	0,7
BG Graz	Graz Süd	Х	97	5,0	0,7
Tirol	Innsbruck Reichenau	Х	98	4,6	0,7
Tirol	Innsbruck Zentrum	Х	98	2,7	0,6
Tirol	Lienz	X	96	4,3	0,9
Tirol	Vomp A12	Х	98	1,7	0,6
Vorarlberg	Dornbirn	Х	90	3,3	0,5
Vorarlberg	Feldkirch	Х	98	3,5	0,7
Wien	Gaudenzdorf	Х	100	1,9	0,5
Wien	Hietzinger Kai	X	100	3,2	0,9
Wien	Rinnböckstr.	X	100	2,2	0,6
Wien	Taborstr.	Х	100	2,9	0,6

6 Ozon

Im Jahr 2002 wurden in Österreich 111 Messstellen gemäß Ozongesetz betrieben, von diesen waren 106 auch IG-L-Messstellen. Von den 111 gesetzlichen Ozonmessstellen wiesen 105 eine Verfügbarkeit über 90%, fünf Messstellen zwischen 75 und 90% sowie eine Messstelle weniger als 75% auf. Zudem liegen Daten von zwei weiteren Messstellen vor, von denen jeweils eine eine Verfügbarkeit über 90% bzw. unter 75% aufweist.

Ozon: Meldung gemäß IG-L bzw. O3G, Verfügbarkeit der gültigen HMW in %, maximaler MW3 und MW1 des Jahres, Anzahl der Tage mit MW1 über 180 μg/m³, Anzahl der MW8a oder MW8b über 110 μg/m³, Anteil der TMW über 65 μg/m³ in Prozent der gültigen TMW, Jahresmittelwert, AOT40-Wert gemäß RL 2002/3/EG, (Mittelwert 1998 – 2002). Die Angaben über die Zahl der TMW > 65 μg/m³ und die AOT40-Werte sind an nicht vegetationsrelevante Messstellen kursiv.

Gebiet	Messstelle	IG-L	O3G	Verfüg- barkeit (%)	Max. MW3 (μg/m³)	Max MW1 (μg/m³)	Tage mit MW1 >180 μg/m³	Tage mit MW8a,b >110 µg/m³	Anteil der TMW >65 µg/m³ (%)	JMW (µg/m³)	AOT40 (ppm*h)
В	Eisenstadt	X	X	95	155	158	0	67	46	60	10,3
В	Illmitz	Х	Х	96	173	182	1	79	49	61	13,4
В	Kittsee	Х	Х	97	173	180	0	77	39	55	13,8
В	Oberwart	Х	Х	97	167	170	0	76	35	51	12,4
K	Arnoldstein Gailitz	х	Х	95	161	162	0	40	23	46	
K	Bleiburg	Х	Х	98	158	163	0	32	21	43	8,4
K	Gerlitzen	Х	Х	97	180	185	1	142	97	99	17,0
K	Klagenfurt Ko- schatstr.	X	Х	98	152	154	0	29	19	39	8,4
K	Klagenfurt Kreuz- bergl	X	Х	98	156	162	0	53	34	48	10,3
K	Oberdrauburg	Х	Х	96	157	162	0	33	19	41	8,4
K	Obervellach	Х	Х	97	150	152	0	27	24	44	6,0
K	Soboth	х	Х	97	156	159	0	61	65	74	12,1
K	Spittal	x	Х	98	141	143	0	13	10	35	4,9
K	St. Georgen	Х	х	96	161	166	0	67	39	53	11,1
K	Villach	Х	х	97	150	151	0	17	10	31	4,6
K	Vorhegg	Х	Х	96	177	185	1	49	60	70	12,3

Gebiet	Messstelle	IG-L	O3G	Verfüg- barkeit (%)	Max. MW3 (μg/m³)	Max MW1 (μg/m³)	Tage mit MW1 >180 μg/m³	Tage mit MW8a,b >110 μg/m³	Anteil der TMW >65 µg/m³ (%)	JMW (µg/m³)	AOT40 (ppm*h)
K	Wietersdorf	х	Х	96	163	166	0	44	28	50	8,3
K	Wolfsberg	Х	Х	98	139	143	0	8	9	32	4,0
N	Amstetten	Х	Х	93	169	169	0	46	20	44	8,6
N	Annaberg	х	Х	95	167	173	0	67	68	74	12,2
N	Bad Vöslau	Х	Х	95	171	181	1	64	45	58	9,0
N	Dunkelsteinerwald	Х	Х	95	178	187	0	73	41	57	11,5
N	Forsthof	Х	Х	95	157	161	0	65	56	68	10,2
N	Gänserndorf	Х	Х	96	159	166	0	72	42	57	11,8
N	Hainburg	Х	Х	94	169	174	0	78	43	59	11,6
N	Heidenreichstein	х	х	94	187	192	1	76	47	64	11,4
N	Himberg	Х	х	88	177	192	1	69	30	50	
N	Irnfritz	х	х	93	189	199	1	63	52	67	10,4
N	Klosterneuburg	Х	х	96	191	206	2	66	43	56	12,0
N	Kollmitzberg	х	х	92	172	178	0	61	42	60	11,1
N	Krems	Х	Х	94	168	176	0	36	27	47	9,0
N	Mistelbach	х	х	84	168	173	0	77	50	63	10,7
N	Mödling	Х	х	95	166	185	1	51	42	55	10,4
N	Payerbach	х	х	96	157	158	0	90	77	83	11,9
N	Pillersdorf	Х	х	96	173	182	1	74	50	64	12,4
N	Pöchlarn	Х	Х	95	162	166	0	54	27	48	8,5
N	Schwechat	Х	х	92	201	265	4	55	31	51	10,2
N	St. Pölten	х	х	92	160	165	0	46	27	48	9,5
N	St. Valentin	Х	х	95	177	178	0	40	19	43	9,2
N	Stixneusiedl	X	Х	95	170	175	0	77	44	60	12,2
N	Stockerau	х	х	94	170	180	0	46	25	48	9,2
N	Streithofen		Х	90	161	169	0	42	34	52	11,7

Gebiet	Messstelle	IG-L	O3G	Verfüg- barkeit (%)	Max. MW3 (μg/m³)	Max MW1 (μg/m³)	Tage mit MW1 >180 μg/m³	Tage mit MW8a,b >110 μg/m³	Anteil der TMW >65 µg/m³ (%)	JMW (µg/m³)	AOT40 (ppm*h)
N	Ternitz			98	153	156	0	43	36	54	9,7
N	Tulln		Х	93	147	173	0	8	13	41	8,1
N	Waidhofen	Χ	Х	95	174	177	0	65	48	61	10,2
N	Wiener Neustadt	Х	Х	93	160	167	0	61	40	55	12,0
N	Wiesmath	X	Х	95	160	165	0	99	77	83	12,9
N	Wolkersdorf	Х	Х	95	174	186	1	68	40	56	10,3
0	Bad Ischl	Х	х	95	172	174	0	26	22	46	6,9
0	Braunau	х	Х	88	173	175	0	41	19	43	
0	Enzenkirchen	Х	Х	95	169	171	0	59	44	61	
0	Grünbach	х	Х	96	168	172	0	74	65	75	12,7
0	Lenzing	Х	Х	97	168	170	0	41	37	53	9,1
0	Schöneben	х	Х	95	165	170	0	58	57	70	10,5
0	Steyr	X	Х	88	172	174	0	23	18	42	7,6
0	Zöbelboden	х	Х	93	168	169	0	47	73	76	10,7
O-L	Linz Freinberg	Х	Х	93	174	179	0	30	33	49	
O-L	Linz Neue Welt	Х	Х	80	170	174	0	31	16	37	6,2
O-L	Steyregg	Χ	х	95	175	176	0	50	28	48	9,8
O-L	Traun	Х	Х	97	178	183	1	55	24	44	9,6
S	Gaisberg		Х	53	186	188	1	70			8,9
S	Hallein Winterstall	х	Х	100	181	189	1	59	52	66	11,3
S	Haunsberg	X	Х	96	181	188	1	63	63	72	12,8
S	Salzburg Lehen	х	Х	100	159	161	0	47	19	41	9,4
S	Salzburg Mirabell- platz	X	X	98	156	157	0	41	21	43	7,8
S	Sonnblick		х	96	157	160	0	152	100	102	17,9
S	St. Johann i.P.	X	Х	100	171	172	0	17	15	38	5,9

Gebiet	Messstelle	IG-L	O3G	Verfüg- barkeit (%)	Max. MW3 (μg/m³)	Max MW1 (μg/m³)	Tage mit MW1 >180 μg/m³	Tage mit MW8a,b >110 μg/m³	Anteil der TMW >65 µg/m³ (%)	JMW (µg/m³)	AOT40 (ppm*h)
S	St. Koloman	X	х	96	171	171	0	63	79	80	11,7
S	Tamsweg	X	Х	97	149	151	0	30	24	47	
S	Zederhaus	X	х	100	143	145	0	19	15	42	
S	Zell a.S.	х	Х	100	149	151	0	29	28	48	6,1
St-G	Graz Nord	X	х	95	169	173	0	61	30	44	12,0
St-G	Graz Platte	X	Х	94	174	176	0	113	68	79	16,0
St-G	Graz Schlossberg	x	х	97	163	168	0	61	40	51	11,3
St-G	Graz Süd	X	Х	97	169	170	0	58	22	40	
St	Arnfels	x	х	98	169	172	0	108	68	78	14,3
St	Bockberg	X	Х	96	179	181	1	96	50	64	
St	Deutschlandsberg	x	х	97	164	166	0	49	30	47	10,4
St	Grundlsee	X	Х	97	170	173	0	76	77	78	11,2
St	Hartberg	x	Х	97	161	162	0	55	25	44	12,2
St	Hochgössnitz	X	Х	96	168	169	0	90	72	80	13,0
St	Hochwurzen	x	х	96	172	173	0	111	97	94	13,6
St	Judenburg	X	Х	95	154	155	0	52	28	48	8,4
St	Kindberg	x	х	98	158	161	0	47	27	46	9,8
St	Klöch	X	Х	97	163	170	0	87	62	73	14,2
St	Leoben Zentrum	x	х	97	163	166	0	35	13	36	7,3
St	Liezen	X	Х	95	163	165	0	36	28	47	7,2
St	Masenberg	X	Х	98	176	181	1	113	80	88	15,0
St	Piber	X	Х	95	174	178	0	76	51	65	11,9
St	Rennfeld	Х	Х	98	171	173	0	137	92	97	17,4
St	Stolzalpe	Χ	Х	96	150	157	0	41	62	70	10,7
St	Voitsberg Mühlgasse	Х	Х	97	177	183	1	68	24	43	11,3
St	Weiz	х	Х	97	157	162	0	43	33	48	10,5

Gebiet	Messstelle	IG-L	O3G	Verfüg- barkeit (%)	Max. MW3 (μg/m³)	Max MW1 (μg/m³)	Tage mit MW1 >180 μg/m³	Tage mit MW8a,b >110 µg/m³	Anteil der TMW >65 µg/m³ (%)	JMW (µg/m³)	AOT40 (ppm*h)
T	Achenkirch		Х	95	160	165	0	21	34	57	7,9
T	Höfen	X	Х	94	164	168	0	30	33	57	9,1
T	Innsbruck Reichenau	Х	Х	97	145	148	0	28	11	33	5,9
T	Innsbruck Sadrach	Х	Х	97	153	160	0	44	30	47	9,4
T	Karwendel West	Х	Х	96	169	171	0	112	95	95	15,4
T	Kramsach	Х	Х	95	163	168	0	27	21	41	6,7
Т	Kufstein	Х	Х	96	176	182	1	32	17	37	7,6
Т	Lienz	Χ	Х	92	151	153	0	28	22	41	8,1
Т	Nordkette	х	Х	98	163	168	0	132	97	97	16,4
Т	St. Sigmund	Х	Х	97	151	155	0	46	82	79	
Т	Zillertaler Alpen	Х	Х	94	155	155	0	100	97	95	13,8
V	Bludenz	х	Х	97	175	181	1	36	21	42	7,6
V	Lustenau	Х	Х	98	192	198	2	38	19	42	9,5
V	Sulzberg	Χ	Х	100	178	185	1	67	80	80	13,6
V	Wald a.A.			61	148	151	0	11			
W	Hermannskogel	Х	Х	100	190	195	0	83	53	66	12,3
W	Hohe Warte	Х	Х	100	191	209	2	47	33	51	9,9
W	Laaerberg	Х	Х	100	192	214	1	32	25	48	7,4
W	Lobau	Х	Х	100	187	202	1	55	29	50	11,1
W	Stephansplatz	Х	Х	100	163	171	0	19	24	46	7,3

7 Staubniederschlag

Staubniederschlag: Verfügbarkeit der Einzelwerte, JMW des Staubniederschlags sowie von Pb und Cd im Staubniederschlag.

	im Staubniederschlag.	Verfüg- barkeit	Staubnieder- schlag	Pb	Cd
Gebiet	Messstelle	%	mg/m².d	mg/m².d	mg/m².d
Kärnten	Arnoldstein - Forst Ost I	100	77	0,127	0,0007
Kärnten	Arnoldstein - Forst Ost IV	83	121	0,058	0,0008
Kärnten	Arnoldstein - Forst West II	92	84	0,076	0,0005
Kärnten	Arnoldstein - Forst West IV	100	238	0,069	0,0006
Kärnten	Arnoldstein - Gailitz 163	92	182	0,097	0,0030
Kärnten	Arnoldstein - Gailitz Werkswohnung	100	112	0,327	0,0024
Kärnten	Arnoldstein - Hohenthurn 42	92	143	0,032	0,0014
Kärnten	Arnoldstein - Kuppe Südost	92	50	0,237	0,0012
Kärnten	Arnoldstein - Siedlung Jeserz	100	68	0,027	0,0004
Kärnten	Arnoldstein - Siedlung Ost	67			
Kärnten	Arnoldstein - Siedlung Werda	100	114	0,088	0,0024
Kärnten	Arnoldstein - Stossau 23	75	133	0,084	0,0020
Kärnten	Arnoldstein - Stossau West II	100	99	0,173	0,0015
Kärnten	Ferlach - Schulhausgasse	75	95	0,007	0,0002
Kärnten	Klagenfurt - Koschatstrasse	100	132	0,014	0,0002
Kärnten	Klagenfurt - Völkermarkterstrasse	100	53	0,006	0,0001
Kärnten	Obervellach - Schulzentrum	100	77	0,004	0,0001
Kärnten	St. Veit - Oktoberplatz	100	85	0,009	0,0001
Kärnten	Villach - Tirolerbrücke	100	65	0,009	0,0002
Niederösterr.	Amstetten	77	112	0,018	0,0002
Niederösterr.	Bad Vöslau	77	70	0,006	0,0001
Niederösterr.	Forsthof	77	38	0,004	0,0001
Niederösterr.	Hainburg	92	115	0,008	0,0003
Niederösterr.	Heidenreichstein	100	45	0,003	0,0001
Niederösterr.	Kollmitzberg	54			
Niederösterr.	Mistelbach	100	70	0,005	0,0001
Niederösterr.	Neusiedl i.T.	77	82	0,004	0,0001
Niederösterr.	St. Pölten	100	61	0,005	0,0001
Niederösterr.	Vösendorf	92	136	0,008	0,0002
Oberösterr.	Braunau	100	116	0,007	0,0001
Oberösterr.	Kremsmünster	100	77	0,009	0,0001
Oberösterr.	Schöneben	100	91	0,003	0,0002
Oberösterr.	Wels	100	125	0,005	0,0001
BG Linz	Linz-Kleinmünchen	100	108	0,006	0,0001
BG Linz	Steyregg	100	142	0,015	0,0003
Salzburg	Abtenau Sonnleiten, Güterweg	83	73		
Salzburg	Bad Gastein Felsenbad	67			
Salzburg	Bischofshofen Friedhofstrasse	67			
Salzburg	Bürmoos 200m W Kirche	83	116		

		Verfüg- barkeit	Staubnieder- schlag	Pb	Cd
Gebiet	Messstelle	%	mg/m².d	mg/m².d	mg/m².d
Salzburg	Fuschl, 400m SO Kirche, Sportplatz	67			
Salzburg	Gartenau St. Leonhard	83	120	0,014	0,0005
Salzburg	Gartenau Steinbachbauer, Taxach	100	115	0,013	0,0004
Salzburg	Hallein Burgfried	100	145	0,010	0,0002
Salzburg	Hallein Gamp	83	156	0,008	0,0004
Salzburg	Hallein Rif, Föhrenweg	92	65	0,009	0,0002
Salzburg	Hallein Solvay	100	135		
Salzburg	Lend Buchberg	100	77	0,014	0,0002
Salzburg	Mariapfarr Örmoos	92	52	0,006	0,0002
Salzburg	Mariapfarr Ort, Schule	100	81		
Salzburg	Messstation Haunsberg	100	53	0,009	0,0004
Salzburg	Mittersill Forsthaus	75	63		
Salzburg	Puch Ortsrand	100	67	0,008	0,0002
Salzburg	Radstadt Bauhof	92	66	0,007	0,0001
Salzburg	Saalbach Ortsanfang Rotes Kreuz	92	108		
Salzburg	Saalfelden Oedt	75	33	0,006	0,0001
Salzburg	Salzburg Gnigl	92	72		
Salzburg	Salzburg Lehen	92	114	0,018	0,0005
Salzburg	Salzburg Maxglan	100	76	0,012	0,0004
Salzburg	Salzburg Nonntal	100	68	0,008	0,0003
Salzburg	Salzburg Rudolfsplatz	100	138	0,024	0,0009
Salzburg	Salzburg Taxham	92	85	0,017	0,0003
Salzburg	Seekirchen Altes Gemeindeamt	92	111	0,011	0,0002
Salzburg	St. Johann Urreiting	83	132	0,008	0,0004
Salzburg	St. Koloman Kleinhorn	75	91	0,006	0,0004
Salzburg	St. Michael Wastlwirt	92	104		
Salzburg	St. Veit Kurpark	83	70		
Salzburg	St. Veit Marktplatz	100	123		
Salzburg	St. Veit Schule	100	77	0,009	0,0003
Salzburg	Stuhlfelden Alte Salzach	75	62		
Salzburg	Stuhlfelden Amersbach	92	47		
Salzburg	Stuhlfelden Flockstation	75	71		
Salzburg	Stuhlfelden Salzachbrücke Pirtendorf	75	43		
Salzburg	Tamsweg, Krankenhaus	67			
Salzburg	Tenneck Eisenwerk	92	67	0,009	0,0003
Salzburg	Uttendorf Salzachsiedlung	50			
Salzburg	Vigaun Kirche	100	70		
Salzburg	Vigaun Kurzentrum	75	52		
Salzburg	Vigaun Riedl	100	79		
Salzburg	Wals Kirche	75	115		
Salzburg	Zell am See Nähe Gemeinde	75	144	0,008	0,0001
Steiermark	Kapfenberg Finkenweg	64			

		Verfüg- barkeit	Staubnieder- schlag	Pb	Cd
Gebiet	Messstelle	%	mg/m².d	mg/m².d	mg/m².d
Steiermark	Kapfenberg Forststr.	93	296	0,016	0,0004
Steiermark	Kapfenberg Lanzgraben	100	49	0,002	0,0004
Steiermark	Kapfenberg Pötschenstr.	86	139	0,003	0,0004
Steiermark	Kapfenberg Vogelweidstr.	79	86	0,002	0,0004
Steiermark	Kapfenberg Volksschule Wienerg.	86	122	0,004	0,0004
Steiermark	Kapfenberg Winklerstr.	93	114	0,007	0,0004
Steiermark	Kapfenberg Zoisgraben	93	112	0,005	0,0004
Steiermark	Leoben - Buschenschank - Lanner Huab`n	80	52		
Steiermark	Leoben Donawitz BFI	100	344	0,031	0,0007
Steiermark	Leoben Donawitz Messstelle	100	181	0,017	0,0006
Steiermark	Leoben Haubenberg	100	95		
Steiermark	Leoben Judaskreuzsiedlung	79	249	0,031	0,0010
Steiermark	Leoben Judendorf	86	74	0,004	0,0004
Steiermark	Leoben Kittenwaldstraße	100	105	0,007	0,0004
Steiermark	Leoben Köllach	86	165	0,004	0,0004
Steiermark	Leoben Köllach - Berg	90	70		
Steiermark	Leoben Mötschlach	80	51		
Steiermark	Leoben Mühltal	100	92	0,005	0,0004
Steiermark	Leoben Proleb	79	86	0,004	0,0005
Steiermark	Leoben Proleb - Berg	60			
Steiermark	Leoben St.Peter-Freienstein	86	126	0,021	0,0007
Steiermark	Leoben Tivoli - Stadion	100	112	0,011	0,0005
Steiermark	Leoben Traidersberg LEO 3	57			
Steiermark	Leoben Traidersberg LEO 3-8	57			
Steiermark	Leoben Traidersberg LEO 8	57			
Steiermark	Leoben Utschmoar	100	57	0,003	0,0004
Steiermark	Leoben Zellenfeldgasse	100	242	0,026	0,0006
Steiermark	Leoben Zentrum	100	100	0,009	0,0005
Steiermark	Niklasdorf - Bahnhof	100	68	0,006	0,0004
Steiermark	Niklasdorf - WIFI	64			
Steiermark	Niklasdorf Kraftwerk	80	89		
Steiermark	Niklasdorf Sportplatz	90	50		
BG Graz	Graz 3.Südgürtel/Liebenauer Hauptstr.	100	158	0,020	0,0004
BG Graz	Graz BG Klusemannstrasse	71		0,015	0,0004
BG Graz	Graz Lustbühel	86	89	0,004	0,0004
BG Graz	Graz St.Leonhard, Herz Jesu Kirche	93	69	0,004	0,0004
BG Graz	Graz TU, Innfeldgasse	79	90	0,004	0,0004
BG Graz	Graz Universität, Meteomessstelle	86	53	0,005	0,0004
BG Graz	Graz-Don Bosco	100	177	0,065	0,0009
BG Graz	Graz-Mitte	100	108	0,025	0,0004
BG Graz	Graz-Nord	93	83	0,008	0,0004

		Verfüg- barkeit	Staubnieder- schlag	Pb	Cd
Gebiet	Messstelle	%	mg/m².d	mg/m².d	mg/m².d
BG Graz	Graz-Süd	100	83	0,013	0,0004
BG Graz	Graz-West, Gaswerkstr.	64		0,022	0,0006
Tirol	Brixlegg Bahnhof	100	106	0,110	0,0010
Tirol	Brixlegg Innweg	100	81	0,204	0,0040
Tirol	Brixlegg Kirche	100	59	0,027	0,0005
Tirol	Imst Auf Arzill	100	167		
Tirol	Imst B171 Tankstelle	100	169		
Tirol	Imst Brennbichl	100	114		
Tirol	Imst Fabrikstr.	<75			
Tirol	Imst HTL-Garten	100	129		
Tirol	Innsbruck Höttinger Au	100	135		
Tirol	Innsbruck Hungerburgbahn Talstation	100	189	0,017	0,0003
Tirol	Innsbruck Olympisches Dorf	100	108		
Tirol	Innsbruck Reichenau	100	128		
Tirol	Innsbruck Zentrum Fallmerayerstr.	100	118	0,013	0,0002
Tirol	Kramsach Hagau	100	72	0,042	0,0010
Tirol	Kramsach Volldöpp	100	74	0,017	<0,0005
Tirol	Münster Innufer	100	94	0,028	0,0010
Tirol	Reith Matzenau	100	138	0,038	0,0010
Tirol	Reith Matzenköpfl	<75		0,070	0,0020
Tirol	St. Johann Apfeldorf	100	54		
Tirol	St. Johann Griesbach	100	85		
Tirol	St. Johann Siedlung Apfeldorf	<50			
Tirol	St. Johann Sommerer	<50			
Tirol	St. Johann Weiberndorf	100	101		
Tirol	Wörgl Ladestr.	100	91		
Tirol	Wörgl Peter Anich-Str.	100	90		
Tirol	Wörgl Salburgerstr.	100	152		
Vorarlberg	Bludenz Rathaus	75	161		
Vorarlberg	Dornbirn Quellgasse	75	108		
Vorarlberg	Feldkirch Konservatorium	92	60		
Vorarlberg	Lorüns	83	152	0,005	0,0001
Wien	Laaer Wald	100	39	0,008	0,0007
Wien	Ostautobahn - Kanzelgarten	100	39	0,010	0,0002

108	Jahresbericht der Luftgütemessungen in Österreich 2002
	Linear contribution of a constitution of the c

Anhang 6: Angaben zur Qualitätssicherung

Die Durchführung von geeigneten qualitätssichernden Maßnahmen bei der Immissionsmessung obliegt den einzelnen Messnetzbetreibern.

Zur Vereinheitlichung der Vorgehensweise für die gasförmigen Komponenten SO_2 , NO_X , CO und O_3 wurde von den Ämtern der Landesregierungen in Kooperation mit dem Umweltbundesamt ein Leitfaden ausgearbeitet, der die grundlegenden Anforderungen an die Immissionsmessung enthält⁴¹.

Zur Sicherstellung der Vergleichbarkeit führt das Umweltbundesamt jedes Frühjahr ein Kalibrierworkshop durch, innerhalb dessen die in der Messkonzept-VO vorgesehene Anbindung an die Primärstandards des Umweltbundesamt erfolgt (siehe auch Jahresbericht 2001 der Luftgütemessungen des Umweltbundesamtes, SPANGL 2002b). Die Ergebnisse des Workshops werden vom Umweltbundesamt publiziert (WOLF, 2003, in Vorbereitung).

Dieser wurde zwischenzeitlich als Richtlinie 14: Leitfaden zur Immissionsmessung nach dem Immissionsschutzgesetz –Luft – Kontinuierliche Immissionsmessung. BMLFUW. Wien 2000, herausgegeben

110	Jahresbericht der Luftgütemessungen in Österreich 2002

Anhang 7: Standortfunktionsbestimmung

Die Messkonzept-VO zum IG-L legt als Referenzmethode für die PM10-Messung die Gravimetrie fest. In der Messpraxis werden in Österreich meist kontinuierlich registrierende Geräte (β -Absorption oder TEOM) eingesetzt, deren Messergebnisse mittels einer Standortfunktion in gravimetrie-äquivalente Daten umzurechnen sind. Derartige Standortfunktionen sind erforderlich, da die PM10-Messung mittels kontinuierlich registrierender Geräte aus messtechnischen Gründen andere – in der Regel niedrigere – Konzentrationen liefert als die gravimetrische Messung. Die Standortfunktion zur Umrechnung kontinuierlicher Messwerte (x) in gravimetrie-äquivalente Daten (y) hat die allgemeine Form $y = k^*x + d$, wobei k und d aus Parallelmessungen zu bestimmen sind. Für jene Fälle, in denen (noch) keine Standortfunktion zur Verfügung steht, kann gemäß Messkonzept-VO bis Ende 2002 ein Default-Faktor k = 1,3 angewandt werden.

Die technischen Rahmenbedingungen zur Ableitung dieser Standortfunktion werden im "Guidance Report" der Europäischen Kommission⁴² unverbindlich festgelegt:

- Parallelmessungen müssen sowohl im Winterhalbjahr wie im Sommerhalbjahr durchgeführt werden;
- es müssen jeweils mindestens 30 Wertepaare vorliegen;
- das Bestimmtheitsmaß der Regressionsgeraden muss mindestens 0,8 betragen;
- der y-Abschnitt der Regressionsgeraden muss unter 5 μg/m³ liegen.

Anstelle von zwei jahreszeitlich unterschiedlichen Standortfunktionen kann eine Funktion für das ganze Jahr verwendet werden, wenn der Unterschied der mit der Winter- und Sommer-Funktion umgerechneten Werte im Bereich des Grenzwertes (d.h. $50 \mu g/m^3$) unter 10% liegt.

Andernfalls wird der Übergang zwischen Winter- und Sommer-Funktion in Form gleitender Mittelwerte vorgeschlagen.

Der Guidance Report schlägt drei Standortfunktionen vor:

- ◆ A: Steigung k und Achsenabschnitt d der Regressionsgeraden: y = k*x + d
- ◆ B: Steigung k der Regressionsgeraden, die durch den Koordinatenursprung führt: y = k*x
- ◆ C: Mittleres Verhältnis k der einzelnen TMW: y = k*x

Derartige Parallelmessungen sind für die Messnetze in Oberösterreich und Salzburg abgeschlossen, wobei in diesen Ländern an mehreren Messstellen über ein Jahr oder länger mit beiden Messverfahren Daten erhoben wurden, sodass die Standortfunktionen gut abgesichert sind. Diese Standortfunktionen wurden für die Daten von 2002 angewandt.

Parallelmessungen wurden in Niederösterreich und Tirol durchgeführt, teilweise aber noch nicht abgeschlossen. In diesen Bundesländern wurde daher für das Jahr 2002 der Default-Faktor 1,30 verwendet.

Auch in den restlichen Messnetzen (Burgenland, Steiermark, Vorarlberg) wurde 2002 der Faktor 1,30 verwendet.

Umweltbundesamt/Federal Environment Agency - Austria

⁴² A Report on Guidance to Member States on PM10 monitoring and intercomparisons with the reference method, EC Working Group on Particulate Matter, 2001

In Wien und Kärnten wurden im Jahr 2002 keine Parallelmessungen durchgeführt. die PM10- Messung erfolgte ausschließlich mittels Gravimetrie.

In Tabelle 37 werden die in den Bundesländern Oberösterreich und Salzburg abgeleiteten Standortfaktoren mit Angabe der für die Vergleichsmessungen verwendeten Messgeräte und des Zeitraums der Messung angeführt.

Tabelle 37: Standortfaktoren für PM10 ents	prechend den Angaben der Messnetzbetreiber

Messstelle	Gravimetrie	kontinuierliche Messung	Zeitraum	Standortfaktor	Art der Funktion
Oberösterreich					
Steyregg (auch verwendet für Linz Freinberg, Steyr, Traun)	Digitel DHA80	TEOM	Jahr 2002	1,18	С
Linz Neue Welt (auch verwendet für Linz 24er Turm, Linz Römerberg)	Digitel DHA80	TEOM	Jahr 2002	1,16	С
Linz ORF-Zentrum	Digitel DHA80	TEOM	Jahr 2002	1,09	В
Wels (auch verwendet für Braunau)	Digitel DHA80	TEOM	Jahr 2002	1,16	mittleres Verhältnis der TMW; TEOM: 40 – 60 µg/m³
St. Peter (auch verwendet für Bad Ischl, Grünbach, Lenzing, Vöcklabruck)	Digitel DHA80	TEOM	Jän. – Juli 2002	1,19	С
Salzburg					
Salzburg Lehen (auch verwendet für Mirabellpl.)	Digitel DHA80	FH62I-N	8.11 11.12.2002	1,00	В
Hallein Hagerkreuzung	Digitel DHA80	FH62I-N	Jahr 2002	1,04	В
Salzburg Rudolfsplatz	Digitel DHA80	FH62I-N	Jahr 2002	1,07	В
Zederhaus	Digitel DHA80	FH62I-N	Jahr 2002	1,00	В

Darüber hinaus liegen Parallelmessungen an den vom Umweltbundesamt betriebenen Messstellen Illmitz, St. Koloman und Vorhegg für 2002 sowie von Wien Erdberg von Mai 2001 bis Mai 2002 vor. In Tabelle 38 sind jene Standortfaktoren angeführt, die sich aus diesen Messungen⁴³ ergeben. Das Umweltbundesamt verwendet jedoch ausschließlich die gravimetrischen Daten für die Bewertung der Luftgüte.

Aufgrund der Tatsache, dass der als Tagesmittelwert formulierte Grenzwert für PM10 deutlich häufiger überschritten wird als der Jahresmittelwert (siehe Abbildung 5), sollte die "Wiedergabe" der Anzahl der TMW über 50 µg/m³ die oberste Priorität bei der Auswahl der Standortfunktion sein. Dabei wird jeweils jene Standortfunktion (Variante A, B oder C) angegeben, die für die Reproduktion der Anzahl der TMW > 50 µg/m³ am besten geeignet ist.

Umweltbundesamt/Federal Environment Agency - Austria

 $^{^{43}}$ Die parallele PM10-Messung mittels Gravimetrie und β -Absorption in Illmitz, St. Koloman, Vorhegg und Wien Erdberg dient u.a. dem Zweck des Vergleichs der beiden Messmethoden.

Da für die Messstellen St. Koloman, Vorhegg und Wien Erdberg die Kriterien für die Anwendung einer Standortfunktion über das ganze Jahr erfüllt sind, wird die Jahres-Funktion verwendet. Hingegen wird für Illmitz die Anzahl der TMW > 50 μ g/m³ mit entsprechenden Halbjahres-Funktionen für Winter und Sommer am besten abgebildet

Tabelle 38: Standortfunktionen für PM10 der Umweltbundesamt-Messstellen

Messstelle	Gravimetrie	kontinuierliche Messung	Zeitraum	Variante/ Standortfunktion
Illmitz	Digitel DHA80	FH62I-N	Jahr 2002	B : $y = 1,43*x$ Winter y = 1,27*x Sommer
St. Koloman	Digitel DHA80	FH62-IN	Jahr 2002	A: y = 1,13*x + 1,15
Vorhegg	Digitel DHA80	FH62-IN	Jahr 2002	B : y = 1,30*x
Wien Erdberg	Digitel DHA80	FH62-IN	20.5.2001- 20.5.2002	A: y = 1,35*x + 2,5

Unsicherheiten bei der Bestimmung der Standortfaktoren

Eine detaillierte Analyse der längeren Zeitreihen paralleler gravimetrischer und kontinuierlicher PM10-Messdaten – siehe Tabelle 39 – zeigt, dass das Verhältnis zwischen gravimetrischer und kontinuierlicher PM10-Messung erheblich variieren kann, nicht nur von Tag zu Tag, sondern auch nach Bildung des Mittelwerts oder des Medians über 30 Tage. Dieser Befund deutet darauf hin, dass die Verwendung einer Standortfunktion, welche auf 30 Tagesmittelwerten beruht, zu erheblichen Abweichungen bei der Umrechnung kontinuierlicher in gravimetrie-äquivalente PM10-Werte führen kann.

In Tabelle 39 sind der Mittelwert, die Standardabweichung sowie das Minimum und Maximum des gleitenden 30 Tage Median dargestellt. Die Variationsbreite (Min, Max) der Faktoren beträgt, bezogen auf den Mittelwert 2001-2002, in Linz Neue Welt –23%/+33%, in Salzburg Rudolfsplatz –20%/+21%, in Illmitz –18%/+27%.

Tabelle 39: Mittelwert und Standardabweichung, sowie Minimum und Maximum des gleitenden 30-Tage Median des Verhältnisses gravimetrischer zu kontinuierlicher Messung der Jahre 2001 und 2002, sowie der Sommer- und Winterhalbjahre 2001 und 2002

	Linz Neue Welt	Linz ORF	Hallein Hagerkreu- zung	Salzburg Rudolfs- platz	Zeder- haus	Illmitz	St. Koloman	Vorhegg
Mittelwert	1.14	1.08	0.98	0.99	0.87	1.41	1.29	1.30
Standardabwei- chung	0.15	0.11	0.11	0.08	0.10	0.13	0.14	0.12
MW Sommer	1.05	1.05	0.96	0.95	0.85	1.35	1.34	1.26
Stabw Sommer	0.09	0.12	0.10	0.06	0.09	0.10	0.12	0.09
MW Winter	1.27	1.12	1.01	1.05	0.92	1.48	1.23	1.34
Stabw Winter	0.11	0.08	0.11	0.07	0.09	0.12	0.14	0.13
Max	1.52	1.34	1.23	1.20	1.16	1.79	1.58	1.67
Min	0.88	0.92	0.78	0.80	0.68	1.15	0.88	1.01
Max Sommer	1.30	1.34	1.21	1.05	1.16	1.35	1.34	1.26
Min Sommer	0.88	0.92	0.78	0.80	0.68	1.17	1.05	1.01
Max Winter	1.52	1.31	1.23	1.20	1.04	1.79	1.52	1.67
Min Winter	0.93	0.95	0.83	0.92	0.79	1.15	0.88	1.04

In Abbildung 26 ist der gleitende Median des Verhältnisses der gravimetrischen zu den kontinuierlich bestimmten Tagesmittelwerten dreier Messstellen in Österreich dargestellt (der Median wurde anstelle des Mittelwertes verwendet, da bei dem Median der Einfluss von atypisch hohen oder niedrigen Verhältnissen geringer ist). Der Mittelungszeitraum beträgt entsprechend der Vorgaben der Messkonzept-VO 30 Tage, wobei der Median nur berechnet wurde, falls mehr als 24 Tagesmittelwerte zur Verfügung stehen. Wie man der Abbildung entnehmen kann, sind die Schwankungen auch innerhalb des Sommer- bzw. Winterhalbjahres beträchtlich.

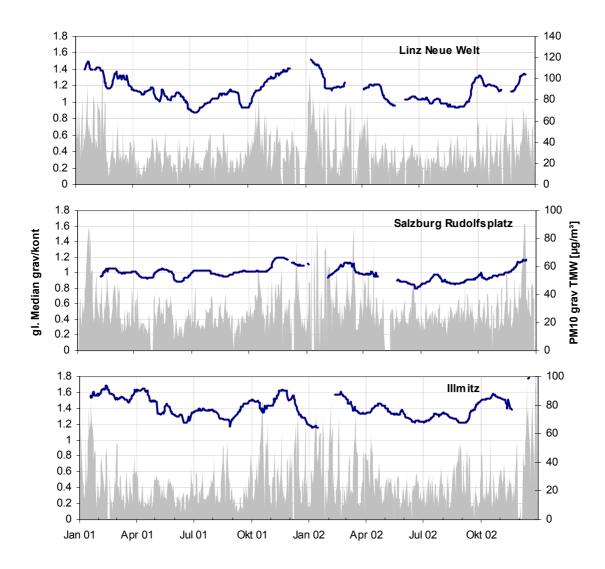


Abbildung 26: Gleitender 30-Tage Median des Verhältnisses gravimetrischer zu kontinuierlicher Messung sowie grav. PM10 Tagesmittelwerte der Messstellen Linz Neue Welt, Salzburg Rudolfsplatz und Illmitz, 2001 und 2002

Die Gründe, die für diese z.T. erheblichen Unterschiede führen, sind vielfältig, sie werden u.a. verursacht durch:

- die mit der Messung prinzipiell verbundene Unsicherheit
- die unterschiedlichen Messprinzipien der kontinuierlichen und des gravimetrischen Verfahren mit unterschiedlicher Vorbehandlung der Probeluft
- der Einfluss der Meteorologie (v.a. der Luftfeuchtigkeit und der Temperatur)
- die Variation der Staubzusammensetzung, die sich bei den Messverfahren unterschiedlich auswirkt.

Ein wesentlicher Faktor für zeitlich variierende Unterschiede zwischen gravimetrischen und kontinuierlichen PM10-Messdaten ist der Anteil flüchtiger PM10-Anteile – u.a. Ammoniumnitrat und im Ammoniumsulfat gebundenes Wasser – die das kontinuierliche Messgerät, dessen Ansaugleitung auf 40°C beheizt ist, nicht erfasst.

Aus diesen Gründen sind Standortfunktionen, welche aus Messungen von nur je 30 Tagen im Winter und im Sommer abgeleitet wurden, mit erheblichen Unsicherheiten behaftet; aber es ist auch klar festzuhalten, dass selbst eine aus einer jahrelangen Parallelmessung abgeleitete Standortfunktion die zeitlichen Variationen des Gravimetrie/FH-Verhältnisses nicht adäquat abzubilden vermag.

Daraus ist die Empfehlung abzuleiten, insbesondere an solchen Standorten, an denen die Anzahl der TMW über 50 μ g/m³ im Bereich des Grenzwertes (35 TMW) liegt, bevorzugt mit der Referenzmethode zu messen.

Außer Frage steht dabei, dass kontinuierliche PM10-Messgeräte aufgrund der hohen zeitlichen Auflösung u.U. essentielle Zusatzinformation zur Ermittlung der Herkunft der Schadstoffe liefern.